diplomacy
Release 1.1.2

Jun 01, 2020

APl Documentation

1 diplomacy.client
1.1 diplomacy.client.channel e e e e
1.2 diplomacy.client.connection oo e e e
1.3 diplomacy.client.network_game L. e
2 diplomacy.communication
2.1 diplomacy.communication.notifications oL 0oL
2.2 diplomacy.communication.requestSt e ot e e e e e e e e e e e e e e e e
2.3 diplomacy.communication.r@SPONSES . . . « ¢ v v v u e e e e e e e e e e e e e e e e e
3 diplomacy.daide
3.1 diplomacy.daide.notifications L. e e
3.2 diplomacy.daide.requests L. e e e e e e e e e
3.3 diplomacy.daide.reSponses i e
4 diplomacy.engine
4.1 diplomacy.engine.gameo e e e e e e e e e
4.2 diplomacy.engine.map e
4.3 diplomacy.engine.message o v v e
4.4 diplomacy.engine.pOWErt e e e e e e
4.5 diplomacy.engine.rendererl e e e e
5 diplomacy.integration
5.1 integration.webdiplomacy_net.apiol e e e e e e e e e e
6 diplomacy.utils
6.1 diplomacy.utils.errors L. e e e
6.2 diplomacy.utils.eXxCeptions L. e e e e e e e e e e e e
6.3 diplomacy.utils.eXport e e e e e e
6.4 diplomacy.utils.order_results e e e e e e e e e e
7 Indices and tables
Python Module Index
Index

25
25
30
37

47
47
58
64
65
67

69
69

71
71
72
75
76

77

79

81

diplomacy, Release 1.1.2

Diplomacy is a strategic board game when you play a country (power) on a map with the goal to conquer at least half
to all the supply centers present on the map. To achieve this goal, you control power units (armies and/or fleets) that
you can use to occupy empty provinces (locations), attack provinces occupied by other powers, or support other units
occupying or attacking a position.

This is a complex game with many rules and corner cases to take into account, and, thus, an interesting subject for
both entertainment (between humans) and studies (e.g. how to create an artificial intelligence good enough to beat
humans). This project aims to provide a complete and working Python implementation of Diplomacy game with
following features:

¢ A working game engine easy to use to get familiar with game rules, test corner cases, and simulate complete
parties.

* An interface to allow the game to be played online, using:
— a Python server implementation to handle many games
— a Python client implementation to play remotely using all the power and facilities of Python
— a web front-end to play remotely using a human user-friendly interface
» Some integration interface to play with other server/client implementations, especially:
— a DAIDE server to play with DAIDE client bots

— a webdiplomacy API to play with webdiplomacy server implementation

API Documentation 1

http://webdiplomacy.net/

diplomacy, Release 1.1.2

2 API Documentation

CHAPTER 1

diplomacy.client

1.1 diplomacy.client.channel

Channel
» The channel object represents an authenticated connection over a socket.
* It has a token that it sends with every request to authenticate itself.

class diplomacy.client.channel.Channel (connection, token)
Bases: object

Channel - Represents an authenticated connection over a physical socket

_ _init__ (connection, token)
Initialize a channel.

Properties:
* connection: Connect ion object from which this channel originated.
* token: Channel token, used to identify channel on server.

* game_id_to_instances: Dictionary mapping a game ID to NetworkGame objects loaded for this
game. Each NetworkGame has a specific role, which is either an observer role, an omniscient
role, or a power (player) role. Network games for a specific game ID are managed within a
GameInstancesSet, which makes sure that there will be at most 1 NetworkGame instance per
possible role.

Parameters

e connection(diplomacy.client.connection.Connection)-—aConnection
object.

¢ token (str)— Channel token.

diplomacy, Release 1.1.2

create_game (game=None, **kwargs)
Send request CreateGame with request parameters kwargs. Return response data returned by server
for this request. See CreateGame about request parameters and response.

get_available_maps (game=None, **kwargs)
Send request GetAvailableMaps with request parameters kwargs. Return response data returned by
server for this request. See GetAvailableMaps about request parameters and response.

get_playable_powers (game=None, **kwargs)
Send request GetPlayablePowers with request parameters kwargs. Return response data returned
by server for this request. See GetPlayablePowers about request parameters and response.

join_game (game=None, **kwargs)
Send request JoinGame with request parameters kwargs. Return response data returned by server for
this request. See JoinGame about request parameters and response.

join_powers (game=None, **kwargs)
Send request JoinPowers with request parameters kwargs. Return response data returned by server
for this request. See JoinPowers about request parameters and response.

list_games (game=None, **kwargs)
Send request L1stGames with request parameters kwargs. Return response data returned by server for
this request. See ListGames about request parameters and response.

get_games_info (game=None, **kwargs)
Send request Get Game s I'n fo with request parameters kwargs. Return response data returned by server
for this request. See Get Games Info about request parameters and response.

get_dummy_ waiting powers (game=None, **kwargs)
Send request Get DummylWaitingPowers with request parameters kwargs. Return response data re-
turned by server for this request. See GetDummyWaitingPowers about request parameters and re-
sponse.

delete_account (game=None, **kwargs)
Send request DeleteAccount with request parameters kwargs. Return response data returned by
server for this request. See De leteAccount about request parameters and response.

logout (game=None, **kwargs)
Send request Logout with request parameters kwargs. Return response data returned by server for this
request. See Logout about request parameters and response.

make_omniscient (game=None, **kwargs)
Send request SetGrade with forced parameters (grade=omniscient,
grade_update=promote) and additional request parameters kwargs. Return response data
returned by server for this request. See Set Grade about request parameters and response.

remove_omniscient (game=None, **kwargs)
Send request SetGrade with forced parameters (grade=omniscient,
grade_update=demote) and additional request parameters kwargs. Return response data
returned by server for this request. See SetGrade about request parameters and response.

promote_administrator (game=None, **kwargs)
Send request Set Grade with forced parameters (grade=admin, grade_update=promote) and
additional request parameters kwargs. Return response data returned by server for this request. See
SetGrade about request parameters and response.

demote_administrator (game=None, **kwargs)
Send request Set Grade with forced parameters (grade=admin, grade_update=demote) and
additional request parameters kwargs. Return response data returned by server for this request. See
SetGrade about request parameters and response.

4 Chapter 1. diplomacy.client

diplomacy, Release 1.1.2

promote_moderator (game=None, **kwargs)
Send request SetGrade with forced parameters (grade=moderator,
grade_update=promote) and additional request parameters kwargs. Return response data
returned by server for this request. See Set Grade about request parameters and response.

demote_moderator (game=None, **kwargs)
Send request SetGrade with forced parameters (grade=moderator,
grade_update=demote) and additional request parameters kwargs. Return response data
returned by server for this request. See SetGrade about request parameters and response.

1.2 diplomacy.client.connection

Connection object, handling an internal websocket tornado connection.

diplomacy.client.connection.connect (hostname, port)
Connect to given hostname and port.

Parameters
* hostname (str)— ahostname
* port (int)—aport
Returns a Connection object connected.
Return type Connection

class diplomacy.client.connection.Connection (hostname, port, use_ssl=False)
Bases: object

Connection class.

The connection class should not be initiated directly, but through the connect method

>>> from diplomacy.client.connection import connect
>>> connection = await connect (hostname, port)

Properties:
* hostname: st r hostname to connect (e.g. ‘localhost’)
e port: int port to connect (e.g. 8888)
* use_ssl: bool telling if connection should be securized (True) or not (False).
 url: (property) st r websocket url to connect (generated with hostname and port)

e connection: tornado.websocket.WebSocketClientConnection a tornado websocket con-
nection object

e connection_count: int number of successful connections from this Connection object. Used to check if
message callbacks is already launched (if count > 0).

¢ is_connecting: tornado.locks.Event a tornado Event used to keep connection status. No request
can be sent while is_connecting. If connected, Synchronize requests can be sent immediately even if
is_reconnecting. Other requests must wait full reconnection.

¢ is_reconnecting: tornado.locks.Event a tornado Event used to keep re-connection status. Non-
synchronize request cannot be sent while is_reconnecting. If reconnected, all requests can be sent.

¢ channels: a weakref.WeakValueDictionary mapping channel token to Channe I object.

1.2. diplomacy.client.connection 5

diplomacy, Release 1.1.2

* requests_to_send: a Dict mapping a request ID to the context of a request not sent. If we are discon-
nected when trying to send a request, then request context is added to this dictionary to be send later once
reconnected.

* requests_waiting responses: a Dict mapping a request ID to the context of a request sent. Contains
requests that are waiting for a server response.

e unknown_tokens: set a set of unknown tokens. We can safely ignore them, as the server has been
notified.

__init__ (hostname, port, use_ssl=False)
Constructor

The connection class should not be initiated directly, but through the connect method

>>> from diplomacy.client.connection import connect
>>> connection = await connect (hostname, port)

Parameters
* hostname (str) — hostname to connect (e.g. ‘localhost’)
* port (int) — port to connect (e.g. 8888)
* use_ssl (bool) —telling if connection should be securized (True) or not (False).
authenticate (username, password)
Send a SignInrequest. User will be created on the server automatically if it doesn’t exist.
Parameters
* username (str)— username
* password (str) — password
Returns a Channel object representing the authentication.
Return type diplomacy.client.channel. Channel

get_daide_port (game_id)
Send a GetDaidePort request.

Parameters game_id (str)— game id for which to retrieve the DAIDE port.
Returns the game DAIDE port

Return type int

1.3 diplomacy.client.network_game

Game object used on client side.

class diplomacy.client.network_game.NetworkGame (channel, received_game)
Bases: diplomacy.engine.game.Game

NetworkGame class.
Properties:
* channel: associated diplomacy.client.channel.Channel object.

« notification_callbacks: Dict mapping a notification class name to a callback to be called when a corre-
sponding game notification is received.

6 Chapter 1. diplomacy.client

diplomacy, Release 1.1.2

__init__ (channel, received_game)
Initialize network game object with a channel and a game object sent by server.

Parameters
* channel (diplomacy.client.channel.Channel)—a Channel object.
* received_game (diplomacy.engine.game.Game) —a Game object.

get_phase_history (**kwargs)
Send game request Get PhaseHistory with forced parameters (with request parameters
) and additional request parameters kwargs. See Get PhaseHistory about request parameters and
response.

leave (**kwargs)
Send game request LeaveGame with forced parameters (with request parameters) andad-
ditional request parameters kwargs. See LeaveGame about request parameters and response.

send_game_message (**kwargs)
Send game request SendGameMessage with forced parameters (with request parameters
) and additional request parameters kwargs. See SendGameMessage about request parameters and
response.

set_orders (**kwargs)
Send game request Set Orders with forced parameters (with request parameters) and ad-
ditional request parameters kwargs. See Set Orders about request parameters and response.

clear_ centers (**kwargs)
Send game request C1earCenters with forced parameters (with request parameters) and
additional request parameters kwargs. See ClearCenters about request parameters and response.

clear_orders (**kwargs)
Send game request ClearOrders with forced parameters (with request parameters) and
additional request parameters kwargs. See ClearOrders about request parameters and response.

clear_units (**kwargs)
Send game request ClearUnits with forced parameters (with request parameters) and
additional request parameters kwargs. See ClearUnit s about request parameters and response.

wait (**kwargs)
Send game request SetiWaitFlag with forced parameters (wait=True) and additional request pa-
rameters kwargs. See SetWaitFlag about request parameters and response.

no_wait (**kwargs)
Send game request SetWaitF1ag with forced parameters (wait=False) and additional request pa-
rameters kwargs. See SetlWaitF1lag about request parameters and response.

vote (**kwargs)
Send game request Vot e with forced parameters (with request parameters) and additional
request parameters kwargs. See Vot e about request parameters and response.

save (**kwargs)
Send game request SaveGame with forced parameters (with request parameters) and ad-
ditional request parameters kwargs. See SaveGame about request parameters and response.

synchronize ()
Send a Synchronize request to synchronize this game with associated server game.

delete (**kwargs)
Send game request DeleteGame with forced parameters (with request parameters) and
additional request parameters kwargs. See DeleteGame about request parameters and response.

1.3. diplomacy.client.network_game 7

diplomacy, Release 1.1.2

kick_powers (**kwargs)
Send game request Set DummyPowers with forced parameters (with request parameters)
and additional request parameters kwargs. See SetDummyPowers about request parameters and re-
sponse.

set_state (**kwargs)
Send game request Set GameState with forced parameters (with request parameters) and
additional request parameters kwargs. See Set Game State about request parameters and response.

process (**kwargs)
Send game request ProcessGame with forced parameters (with request parameters) and
additional request parameters kwargs. See ProcessGame about request parameters and response.

query_schedule (**kwargs)
Send game request QuerySchedule with forced parameters (with request parameters)
and additional request parameters kwargs. See QuerySchedule about request parameters and re-
sponse.

start (**kwargs)
Send game request SetGameStatus with forced parameters (status=active) and additional re-
quest parameters kwargs. See Set GameStatus about request parameters and response.

pause (**kwargs)
Send game request Set GameStatus with forced parameters (status=paused) and additional re-
quest parameters kwargs. See Set GameStatus about request parameters and response.

resume (**kwargs)
Send game request SetGameStatus with forced parameters (status=active) and additional re-
quest parameters kwargs. See Set GameStatus about request parameters and response.

cancel (**kwargs)
Send game request SetGameStatus with forced parameters (status=canceled) and additional
request parameters kwargs. See Set GameStatus about request parameters and response.

draw (**kwargs)
Send game request Set GameStatus with forced parameters (status=completed) and additional
request parameters kwargs. See Set GameStatus about request parameters and response.

add_on_cleared_centers (notification_callback)
Add callback for notification ClearedCenters. Callback signature: callback (network_game,
notification) -> None.

add_on_cleared_orders (notification_callback)
Add callback for notification ClearedOrders. Callback signature: callback (network_game,
notification) —-> None.

add_on_cleared_units (notification_callback)
Add callback for notification ClearedUnits. Callback signature: callback (network_game,
notification) -> None.

add_on_game_deleted (notification_callback)
Add callback for notification GameDeleted. Callback signature: callback (network_game,
notification) -> None.

add_on_game_message_received (notification_callback)
Add callback for notification GameMessageReceived. Callback signature:
callback (network_game, notification) -> None.

add_on_game_processed (notification_callback)
Add callback for notification GameProcessed. Callback signature: callback (network_game,
notification) -> None.

8 Chapter 1. diplomacy.client

diplomacy, Release 1.1.2

add_on_game_phase_update (notification_callback)
Add callback for notification GamePhaseUpdate. Callback signature: callback (network_game,
notification) —-> None.

add_on_game_status_update (notification_callback)
Add callback for notification GameStatusUpdate. Callback signature:
callback (network_game, notification) -> None.

add_on_omniscient_updated (notification_callback)
Add callback for notification OmniscientUpdated. Callback signature:
callback (network_game, notification) -> None.

add_on_power_orders_flag (notification_callback)
Add callback for notification PowerOrdersFlag. Callback signature:
callback (network_game, notification) -> None.

add_on_power_orders_update (notification_callback)
Add callback for notification @ PowerOrdersUpdate. Callback signature:
callback (network_game, notification) -> None.

add_on_power_vote_updated (notification_callback)
Add callback for notification PowerVoteUpdated. Callback signature:
callback (network_game, notification) -> None.

add_on_power_wait_flag (notification_callback)
Add callback for notification PowerwaitFlag. Callback signature: callback (network_game,
notification) -> None.

add_on_powers_controllers (notification_callback)
Add callback for notification @ PowersControllers. Callback signature:
callback (network_game, notification) -> None.

add_on_vote_count_updated (notification_callback)
Add callback for notification VoteCountUpdated. Callback signature:
callback (network_game, notification) -> None.

add_on_vote_updated (notification_callback)
Add callback for notification VoteUpdated. Callback signature: callback (network_game,
notification) —-> None.

clear_on_cleared_centers ()
Clear callbacks for notification ClearedCenters..

clear_on_cleared orders ()
Clear callbacks for notification ClearedOrders..

clear_on_cleared_units ()
Clear callbacks for notification ClearedUnits..

clear_on_game_deleted()
Clear callbacks for notification GameDeleted..

clear_on_game_ message_received ()
Clear callbacks for notification GameMessageReceived..

clear_on_game_processed/()
Clear callbacks for notification GameProcessed..

clear_on_game_phase_update ()
Clear callbacks for notification GamePhaseUpdate..

1.3. diplomacy.client.network_game 9

diplomacy, Release 1.1.2

clear_on_game_status_update ()
Clear callbacks for notification GameStatusUpdate..

clear_on_omniscient_updated ()

Clear callbacks for notification OmniscientUpdated..

clear_on_power_orders_flag()
Clear callbacks for notification PowerOrdersFlag..

clear_on_power_orders_update ()

Clear callbacks for notification Powe rOrdersUpdate..

clear_on_power_vote_updated ()
Clear callbacks for notification PowerVoteUpdated..

clear_on_power_wait_flag()
Clear callbacks for notification PowerWaitFlag..

clear_on_powers_controllers ()

Clear callbacks for notification PowersControllers..

clear_on_vote_count_updated ()
Clear callbacks for notification VoteCountUpdated..

clear_on_vote_updated()
Clear callbacks for notification Vot eUpdated..

add_notification_callback (notification_class, notification_callback)

Add a callback for a notification.

Parameters

e notification_class — anotification class. See diplomacy.communication.

notifications about available notifications.

e notification_callback - callback to add:

notification) -> None.

clear notification_callbacks (notification_class)
Remove all user callbacks for a notification.

Parameters notification_class — a notification class

notify (notification)

callback (network_game,

Notify game with given notification (call associated callbacks if defined).

10

Chapter 1. diplomacy.client

CHAPTER 2

diplomacy.communication

2.1 diplomacy.communication.notifications

Server -> Client notifications.

class diplomacy.communication.notifications.AccountDeleted (**kwargs)
Bases: diplomacy.communication.notifications._ChannelNotification

Notification about an account deleted.

class diplomacy.communication.notifications.OmniscientUpdated (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a grade updated. Sent at channel level.
Properties:
» grade_update: st r One of ‘promote’ or ‘demote’.
e game: parsing.JsonableClassType (Game) a diplomacy.engine.game.Game object.

class diplomacy.communication.notifications.ClearedCenters (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about centers cleared.

class diplomacy.communication.notifications.ClearedOrders (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about orders cleared.

class diplomacy.communication.notifications.ClearedUnits (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about units cleared.

class diplomacy.communication.notifications.VoteCountUpdated (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about new count of draw votes for a game (for observers).

11

diplomacy, Release 1.1.2

Properties:
e count_voted: int number of powers that have voted.
* count_expected: int number of powers to be expected to vote.

class diplomacy.communication.notifications.VoteUpdated (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about votes updated for a game (for omniscient observers).
Properties:

e vote: Dict mapping a power name to a Vote (st r) object representing power vote. Possible votes are:
yes, no, neutral.

class diplomacy.communication.notifications.PowerVoteUpdated (**kwargs)
Bases: diplomacy.communication.notifications.VoteCountUpdated

Notification about a new vote for a specific game power (for player games).
Properties:
* vote: str vote object representing associated power vote. Can be yes, no, neutral.

class diplomacy.communication.notifications.PowersControllers (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about current controller for each power in a game.
Properties:
* powers: A Dict that maps a power_name to a controller_name str.
* timestamps: A Dict that maps a power_name to timestamp where the controller took over.

class diplomacy.communication.notifications.GameDeleted (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a game deleted.

class diplomacy.communication.notifications.GameProcessed (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a game phase update. Sent after game has processed a phase.
Properties:

* previous_phase_data: diplomacy.utils.game_phase_data.GamePhaseData of the previ-
ous phase

e current_phase_data: diplomacy.utils.game_phase_data.GamePhaseData of the current
phase

class diplomacy.communication.notifications.GamePhaseUpdate (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a game phase update.

Properties:
* phase_data: diplomacy.utils.game_phase_data.GamePhaseData of the updated phase
* phase_data_type: str. One of ‘state_history’, ‘state’, ‘phase’

class diplomacy.communication.notifications.GameStatusUpdate (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

12 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

Notification about a game status update.
Properties:
-status: str. One of ‘forming’, ‘active’, ‘paused’, ‘completed’, ‘canceled’

class diplomacy.communication.notifications.GameMessageReceived (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a game message received.
Properties:
* message: diplomacy.engine.message.Message received.

class diplomacy.communication.notifications.PowerOrdersUpdate (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a power order update.
Properties:
 orders: List of updated orders (i.e. str)

class diplomacy.communication.notifications.PowerOrdersFlag (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a power order flag update.
Properties:
e order_is_set: int. O = ORDER_NOT_SET, 1 = ORDER_SET_EMPTY, 2 = ORDER_SET.

class diplomacy.communication.notifications.PowerWaitFlag (**kwargs)
Bases: diplomacy.communication.notifications._GameNotification

Notification about a power wait flag update.
Properties:

* wait: bool that indicates to wait until the deadline is reached before proceeding. Otherwise if all powers
are not waiting, the game is processed as soon as all non-eliminated powers have submitted their orders.

diplomacy.communication.notifications.parse_dict (json_notification)
Parse a JSON expected to represent a notification. Raise an exception if parsing failed.

Parameters json_notification —JSON dictionary.

Returns a notification class instance.

2.2 diplomacy.communication.requests

Client -> Server requests.

This module contains the definition of request (as classes) that a client can send to Diplomacy server implemented in
this project.

The client -> server communication follows this procedure:
* Client sends a request to server. All requests have parameters that must be filled by client before being sent.
 Server replies with a response, which is either an error response or a valid response.
¢ Client receives and handles server response.

— If server response is an error, client converts it to a typed exception and raises it.

2.2. diplomacy.communication.requests 13

diplomacy, Release 1.1.2

— If server response is a valid response, client return either the response data directly, or make further treat-
ments and return a derived data.

Diplomacy package actually provides 2 clients: the Python client and the web front-end.

Web front-end provides user-friendly forms to collect required request parameters, makes all request calls internally,
and then uses them to update graphical user interface. So, when using front-end, you don’t need to get familiar with
underlying protocol, and documentation in this module won’t be really useful for you.

Python client consists of three classes (Connection, Channel and NetworkGame) which provide appropriate
methods to automatically send requests, handle server response, and either raise an exception (if server returns an
error) or return a client-side wrapped data (if server returns a valid response) where requests were called. Thus, these
methods still need to receive request parameters, and you need to know what kind of data they can return. So, if you
use Python client, you will need the documentation in this module, which describes, for each request:

* the request parameters (important)
* the server valid responses (less interesting)
¢ the Python client returned values (important)

All requests classes inherit from _AbstractRequest which require parameters name (from parant class
NetworkData), request_idand re_sent. These parameters are automatically filled by the client.

From parent class _AbstractRequest, we get 3 types of requests:
* public requests, which directly inherit from _AbstractRequest.

* channel requests, inherited from _AbstractChannelRequest, which requires additional parameter
token. Token is retrieved by client when he connected to server using connection request SignIn, and is
then used to create a Channel object. Channel object will be responsible for sending all other channel re-
quests, automatically filling token field for these requests.

e game requests, intherited from _AbstractGameRequest, which itself inherit from
_AbstractChannelRequest, and requires additional parameters game_id, game_role and phase
(game short phase name). Game ID, role and phase are retrieved for a specific game by the client when he
joined a game through one of featured Channel methods which return a Net workGame object. Network
game will then be responsible for sending all other game requests, automatically filling game ID, role and phase
for these requests.

Then, all other requests derived directly from either abstract request class, abstract channel request class, or abstract
game request class, may require additional parameters, and if so, these parameters will need to be filled by the user,
by passing them to related client methods.

Check Connect ion for available public request methods (and associated requests).
Check Channel for available channel request methods (and associated requests).
Check NetworkGame for available game request methods (and associated requests).
Then come here to get parameters and returned values for associated requests.

class diplomacy.communication.requests.GetDaidePort (**kwargs)
Bases: diplomacy.communication.requests._AbstractRequest

Public request to get DAIDE port opened for a game.
Parameters game_id (str)—ID of game for which yu want to get DAIDE port
Returns
* Server: DataPort

* Client: int - DAIDE port

14 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

Raises diplomacy.utils.exceptions.DaidePortException — if there is no DAIDE
port associated to given game ID.

class diplomacy.communication.requests.SignIn (**kwargs)
Bases: diplomacy.communication.requests._AbstractRequest

Connection request. Log in or sign in to server.
Parameters
* username (str)— account username
* password (str) —account password
Returns
e Server: DataToken

* Client: a Channel object presenting user connected to the server. If any sign in error
occurs, raise an appropriate ResponseException.

class diplomacy.communication.requests.CreateGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to create a game.
Parameters
* game_id (str, optional)- game ID. If not provided, a game ID will be generated.

* n_controls (int, optional) — number of controlled powers required to start the
game. A power becomes controlled when a player joins the game to control this power.
Game won’t start as long it does not have this number of controlled powers. Game will stop
(to forming state) if the number of controlled powers decrease under this number (e.g.
when powers are kicked, eliminated, or when a player controlling a power leaves the game).
If not provided, set with the number of powers on the map (e.g. 7 on standard map).

* deadline (int, optional) — (default 300) time (in seconds) for the game to wait
before processing a phase. 0 means no deadline, ie. game won’t process a phase until either
all powers submit orders and turn off wait flag, or a game master forces game to process.

* registration_password(str, optional)-—passwordrequired to join the game.
If not provided, anyone can join the game.

* power_name (str, optional)— power to control once game is created.

— If provided, the user who send this request will be joined to the game as a player control-
ling this power.

— If not provided, the user who send this request will be joined to the game as an omniscient
observer (ie. able to see everything in the game, including user messages). Plus, as game
creator, user will also be a game master, ie. able to send master requests, e.g. to force
game processing.

* state (dict, optional)- game initial state (for expert users).

* map_name (str, optional) - (default 'standard') map to play on. You can re-
trieve maps available on server by sending request GetAvailableMaps.

* rules (list, optional)-listof strings - game rules (for expert users).
Returns

e Server: DataGame

2.2. diplomacy.communication.requests

15

diplomacy, Release 1.1.2

* Client: a NetworkGame object representing a client version of the game created and
joined. Either a power game (if power name given) or an omniscient game.

class diplomacy.communication.requests.DeleteAccount (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to delete an account.
Parameters username (str, optional)-—name of user to delete account
* if not given, then account to delete will be the one of user sending this request.
* if provided, then user submitting this request must have administrator privileges.
Returns None

class diplomacy.communication.requests.GetDummyWaitingPowers (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to get games with dummy waiting powers. A dummy waiting power is a dummy (not controlled)
power:

* not yet eliminated,

» without orders submitted (for current game phase),
* but able to submit orders (for current game phase),
¢ and who is waiting for orders.

It’s a non-controlled orderable free power, which is then best suited to be controlled by an automated player
(e.g. abot, or a learning algorithm).

Parameters buffer_ size (int)- maximum number of powers to return.
Returns
» Server: DataGamesToPowerNames

* Client: a dictionary mapping a game ID to a list of dummy waiting power names, such that
the total number of power names in the entire dictionary does not exceed given buffer size.

class diplomacy.communication.requests.GetAvailableMaps (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to get maps available on server.
Returns
e Server: DataMaps

* Client: a dictionary associating a map name to a dictionary of information related to the
map. You can especially check key 'powers' to get the list of map power names.

class diplomacy.communication.requests.GetPlayablePowers (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to get the list of playable powers for a game. A playable power is a dummy (uncontrolled)
power not yet eliminated.

Parameters game_id (str)—ID of game to get playable powers
Returns
* Server: DataPowerNames

* Client: set of playable power names for given game ID.

16 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

class diplomacy.communication.requests.JoinGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to join a game.
Parameters
* game_id (str)—ID of game to join

* power_name (str, optional) — if provided, name of power to control. Otherwise,
user wants to observe game without playing.

* registration_password (str, optional) - password to join game. If omitted
while game requires a password, server will return an error.

Returns
» Server: DataGame
* Client: a Net workGame object representing the client game, which is either:
— apower game (if power name was given), meaning that this network game allows user to
play a power

— an observer game, if power was not given and user does not have omniscient privileges
for this game. Observer role allows user to watch game phases changes, orders submitted
and orders results for each phase, but he can not see user messages and he can not send
any request that requires game master privileges.

— an omniscient game, if power was not given and user does have game master privileges.
Omniscient role allows user to see everything in the game, including user messages. If
user does only have omniscient privileges for this game, he can’t do anything more, If he
does have up to game master privileges, then he can also send requests that require game
master privileges.

class diplomacy.communication.requests.JoinPowers (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to join many powers of a game with one request.

This request is mostly identical to JoinGame, except that list of power names is mandatory. It’s useful to allow

the user to control many powers while still working with 1 client game instance.
Parameters
* game_id (str)—ID of game to join
* power_names (list, optional)- list of power names to join
* registration_ password (str, optionl)-— password to join the game

Returns None. If request succeeds, then the user is registered as player for all given power names.
The user can then simply join game to one of these powers (by sending a JoinGame request),
and he will be able to manage all the powers through the client game returned by JoinGame.

class diplomacy.communication.requests.ListGames (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to find games.
Parameters

* game_id(str, optional)—ifprovided, look for games with game ID either contain-
ing or contained into this game ID.

* status (str, optional)-if provided, look for games with this status.

2.2. diplomacy.communication.requests

17

diplomacy, Release 1.1.2

* map_name (str, optional) - if provided, look for games with this map name.

* include_protected (bool optional) — (default True) tell if we must look into
games protected by a password

* for_omniscience (bool, optional) — (default False) tell if we look for games
where request user can be at least omniscient.

Returns
e Server: DataGames

* Client: a list of DataGameInfo objects, each containing a bunch of information about a
game found. If no game found, list will be empty.

class diplomacy.communication.requests.GetGamesInfo (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to get information for a given list of game indices.
Parameters games (1ist) — list of game ID.
Returns
» Server: DataGames
* Client: a list of DataGame Info objects.

class diplomacy.communication.requests.Logout (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to logout. Returns nothing.

class diplomacy.communication.requests.UnknownToken (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to tell server that a channel token is unknown.

Note: Client does not even wait for a server response when sending this request, which acts more like a “client
notification” sent to server.

class diplomacy.communication.requests.SetGrade (**kwargs)
Bases: diplomacy.communication.requests._AbstractChannelRequest

Channel request to modify the grade of a user. Require admin privileges to change admin grade, and at least
game master privileges to change omniscient or moderator grade.

Parameters
* grade (str)— grade to update (' omniscient', 'admin' or 'moderator')
* grade_update (str)—how to make update (' promote"' or 'demote')
* username (str) — user for which the grade must be modified

* game_id (str, optional)-ID of game for which the grade must be modified. Re-
quired only for 'moderator' and 'omniscient' grade.

Returns None

class diplomacy.communication.requests.ClearCenters (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to clear supply centers. See method Game. clear. centers ().

18 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

Parameters power_name (str, optional)—if given, clear centers for this power. Otherwise,
clear centers for all powers.

Returns None

class diplomacy.communication.requests.ClearOrders (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to clear orders.

Parameters power_name (str, optional)—if given, clear orders for this power. Otherwise,
clear orders for all powers.

Returns None

class diplomacy.communication.requests.ClearUnits (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to clear units.

Parameters power_name (str, optional) - if given, clear units for this power. Otherwise,
clear units for all powers.

Returns None

class diplomacy.communication.requests.DeleteGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to delete a game. Require game master privileges. Returns nothing.

class diplomacy.communication.requests.GetAllPossibleOrders (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to get all possible orders. Return (server and client) a DataPossibleOrders object containing
possible orders and orderable locations.

class diplomacy.communication.requests.GetPhaseHistory (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to get a list of game phase data from game history for given phases interval. A phase can be
either None, a phase name (string) or a phase index (integer). See Game.get_phase _history () about
how phases are used to retrieve game phase data.

Parameters
* from phase (str | int, optional)- phase from which to look in game history
* to_phase (str | int, optional)- phase up to which to look in game history
Returns
» Server: DataGamePhases

* Client: a list of GamePhaseData objects corresponding to game phases found between
from_phase and to_phase in game history.

class diplomacy.communication.requests.LeaveGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to leave a game (logout from game). If request power name is set (ie. request user was a player),
then power will become uncontrolled. Otherwise, user will be signed out from its observer (or omniscient) role.
Returns nothing.

class diplomacy.communication.requests.ProcessGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

2.2. diplomacy.communication.requests 19

diplomacy, Release 1.1.2

Game request to force a game processing. Require master privileges. Return nothing.

class diplomacy.communication.requests.QuerySchedule (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to get info about current scheduling for a game in server. Returns (server and client) a
DataGameSchedule object.

class diplomacy.communication.requests.SaveGame (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to get game exported in JSON format.
Returns
* Server: DataSavedGame
* Client: dict - the JSON dictionary.

class diplomacy.communication.requests.SendGameMessage (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game message to send a user request.

Parameters message (Message) — message to send. See Message for more info. message
sender must be request user role (ie. power role, in such case). Message time sent must not be
defined, it will be allocated by server.

Returns
e Server: DataTimeStamp
* Client: nothing (returned timestamp is just used to update message locally)

class diplomacy.communication.requests.SetDummyPowers (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to set dummy powers. Require game master privileges. If given powers are controlled, related
players are kicked and powers become dummy (uncontrolled).

Parameters

* power_names (1ist, optional)-Ilistof power names to set dummy. If not provided,
will be all map power names.

* username - if provided, only power names controlled by this user will be set dummy.

Returns None

class diplomacy.communication.requests.SetGameState (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to set a game state (for exper users). Require game master privileges.
Parameters
* state (dict)— game state
* orders (dict) — dictionary mapping a power name to a list of orders strings
* results (dict) — dictionary mapping a unit to a list of order result strings
* messages (dict) — dictionary mapping a timestamp to a message

Returns None

20 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

class diplomacy.communication.requests.SetGameStatus (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to force game status (only if new status differs from previous one). Require game master privi-
leges.

Parameters status (str) — game status to set. Either ' forming', 'active', 'paused’,
'completed' or 'canceled'.

* If new status is 'completed', game will be forced to draw.

* If new statusis 'active"', game will be forced to start.

* If new status is 'paused"', game will be forced to pause.

* If new status is 'canceled"', game will be canceled and become invalid.
Returns None

class diplomacy.communication.requests.SetOrders (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to set orders for a power.

Parameters

* power_name (str, optional)— power name. If not given, request user must be a
game player, and power is inferred from request game role.

* orders (1ist) - list of power orders.
* wait (bool, optional) - if provided, wait flag to set for this power.
Returns None

class diplomacy.communication.requests.SetWaitFlag (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to set orders for a power.

Parameters

* power_name (str, optional)— power name. If not given, request user must be a
game player, and power if inferred from request game role.

* wait (bool) — wait flag to set.
Returns None

class diplomacy.communication.requests.Synchronize (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to force synchronization of client game with server game. If necessary, server will send appropri-
ate notifications to client game so that it can be up to date with server game state.

Parameters timestamp (int) - timestamp since which client game needs to synchronize.
Returns (server and client) a DataGameInfo object.

class diplomacy.communication.requests.Vote (¥*kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Game request to vote for draw decision. If number of pro-draw votes > number of con-draw votes for current

phase, then server will automatically draw the game and send appropriate notifications. Votes are reset after a
game processing.

Parameters

2.2. diplomacy.communication.requests 21

diplomacy, Release 1.1.2

* power_name (str, optional)— power name who wants to vote. If not provided,
request user must be a game player, and power name will be inferred from request game
role.

* vote (str)-voteto set. Either 'yes' (power votes for draw), 'no ' (power votes against
draw), or 'neutral' (power does not want to decide).

Returns None

diplomacy.communication.requests.parse_dict (json_request)
Parse a JSON dictionary expected to represent a request. Raise an exception if parsing failed.

Parameters json_request (dict)—JSON dictionary.
Returns a request class instance.

Return type _AbstractRequest | _AbstractChannelRequest | _AbstractGameRequest

2.3 diplomacy.communication.responses

Server -> Client responses sent by server as replies to requests.

class diplomacy.communication.responses.Error (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Error response sent when an error occurred on server-side while handling a request.
Properties:

* error_type: str - error type, containing the exception class name.

* message: str - error message

throw ()
Convert this error to an instance of a Diplomacy ResponseException class and raises it.

class diplomacy.communication.responses.Ok (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Ok response sent by default after handling a request. Contains nothing.

class diplomacy.communication.responses.NoResponse (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Placeholder response to indicate that no responses are required

class diplomacy.communication.responses.DataGameSchedule (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Response with info about current scheduling for a game.
Properties:
e game_id: str - game ID
* phase: str - game phase
* schedule: SchedulerEvent - scheduling information about the game

class diplomacy.communication.responses.DataGameInfo (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Response containing information about a game, to be used when no entire game object is required.

Properties:

22 Chapter 2. diplomacy.communication

diplomacy, Release 1.1.2

e game_id: game ID

» phase: game phase

* timestamp: latest timestamp when data was saved into game on server (ie. game state or message)
* timestamp_created: timestamp when game was created on server

* map_name: (optional) game map name

* observer_level: (optional) highest observer level allowed for the user who sends the request. Either
'observer_type', 'omniscient_type' or 'master_type’'.

 controlled_powers: (optional) list of power names controlled by the user who sends the request.
¢ rules: (optional) game rules

* status: (optional) game status

* n_players: (optional) number of powers currently controlled in the game

* n_controls: (optional) number of controlled powers required by the game to be active

¢ deadline: (optional) game deadline - time to wait before processing a game phase

* registration_password: (optional) boolean - if True, a password is required to join the game

class diplomacy.communication.responses.DataPossibleOrders (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Response containing information about possible orders for a game at its current phase.
Properties:
* possible_orders: dictionary mapping a location short name to all possible orders here
¢ orderable_locations: dictionary mapping a power name to its orderable locations

class diplomacy.communication.responses.UniqueData (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Response containing only 1 field named data. A derived class will contain a specific typed value in this field.

classmethod validate_params ()
Called when getting model to validate parameters. Called once per class.

class diplomacy.communication.responses.DataToken (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a token.

class diplomacy.communication.responses.DataMaps (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing maps info (dictionary mapping a map name to a dictionary with map information).

class diplomacy.communication.responses.DataPowerNames (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a list of power names.

class diplomacy.communication.responses.DataGames (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a list of DataGame Info objects.

2.3. diplomacy.communication.responses 23

diplomacy, Release 1.1.2

class diplomacy.communication.responses.DataPort (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a DAIDE port (integer).

class diplomacy.communication.responses.DataTimeStamp (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a timestamp (integer).

class diplomacy.communication.responses.DataGamePhases (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a list of GamePhaseData objects.

class diplomacy.communication.responses.DataGame (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a Game object.

class diplomacy.communication.responses.DataSavedGame (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a game saved in JSON dictionary.

class diplomacy.communication.responses.DataGamesToPowerNames (**kwargs)
Bases: diplomacy.communication.responses.UniqueData

Unique data containing a dictionary mapping a game ID to a list of power names.

diplomacy.communication.responses.parse_dict (json_response)
Parse a JSON dictionary expected to represent a response. Raise an exception if either:

* parsing failed

* response received is an Error response. In such case, a ResponseException is raised with the error message.

Parameters json_response —a JSON dict.

Returns a Response class instance.

24 Chapter 2. diplomacy.communication

CHAPTER 3

diplomacy.daide

3.1 diplomacy.daide.notifications

DAIDE Notifications - Contains a list of responses sent by the server to the client

class diplomacy.daide.notifications.DaideNotification (**kwargs)
Bases: object

Represents a DAIDE response.

__init__ (**kwargs)
Constructor

to_bytes ()
Returning the bytes representation of the response

to_string()
Returning the string representation of the response

class diplomacy.daide.notifications.MapNameNotification (map_name, **kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a MAP DAIDE response. Sends the name of the current map to the client.

Syntax:

MAP ('name')

__init__ (map_name, **kwargs)
Builds the response :param map_name: String. The name of the current map.

class diplomacy.daide.notifications.HelloNotification (power_name, passcode, level,

deadline, rules, **kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a HLO DAIDE response. Sends the power to be played by the client with the passcode to rejoin the
game and the details of the game.

25

diplomacy, Release 1.1.2

Syntax:

HLO (power) (passcode) (variant) (variant)

Variant syntax:

LVL n # Level of the syntax accepted
MTL seconds # Movement time limit

RTL seconds # Retreat time limit

BTL seconds # Build time limit

DSD # Disables the time 1limit when a client disconects
AOA # Any orders accepted

LVL 10:

Variant syntax:

PDA # Accept partial draws

NPR # No press during retreat phases
NPB # No press during build phases
PTL seconds # Press time limit

__init__ (power_name, passcode, level, deadline, rules, **kwargs)
Builds the response

Parameters
* power_name — The name of the power being played.
* passcode — Integer. A passcode to rejoin the game.
e level - Integer. The daide syntax level of the game
* deadline - Integer. The number of seconds per turn (0 to disable)
* rules — The list of game rules.

class diplomacy.daide.notifications.SupplyCenterNotification (powers_centers,

map_name,

**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a SCO DAIDE notification. Sends the current supply centre ownership.

Syntax:

SCO (power centre centre ...) (power centre centre ...)

__init__ (powers_centers, map_name, **kwargs)
Builds the notification

Parameters
* powers_centers — A dict of {power_name: centers} objects
* map_name — The name of the map

class diplomacy.daide.notifications.CurrentPositionNotification (phase_name,
powers_units,
pow-
ers_retreats,

**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

26 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

Represents a NOW DAIDE notification. Sends the current turn, and the current unit positions.

Syntax:

NOW (turn) (unit) (unit)

Unit syntax:

power unit_type province
power unit_type province MRT (province province ...)

__init__ (phase_name, powers_units, powers_retreats, **kwargs)
Builds the notification

Parameters
* phase_name — The name of the current phase (e.g. ‘S1901M”)
* powers — A list of diplomacy.engine.power. Power objects

class diplomacy.daide.notifications.MissingOrdersNotification (phase_name,
power,

**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a MIS DAIDE response. Sends the list of unit for which an order is missing or indication about
required disbands or builds.

Syntax:

MIS (unit) (unit)
MIS (unit MRT (province province ...)) (unit MRT (province province ...))
MIS (number)

__init__ (phase_name, power, **kwargs)
Builds the response :param phase_name: The name of the current phase (e.g. ‘S1901M’) :param power:
The power to check for missing orders :type power: diplomacy.engine.power.Power

class diplomacy.daide.notifications.OrderResultNotification (phase_name, or-
der_bytes, results,
*Ekwargs)

Bases: diplomacy.daide.notifications.DaideNotification
Represents a ORD DAIDE response. Sends the result of an order after the turn has been processed.

Syntax:

ORD (turn) (order) (result)
ORD (turn) (order) (result RET)

Result syntax:

sSucC # Order succeeded (can apply to any order).

BNC # Move bounced (only for MTO, CTO or RTO orders).

CUT # Support cut (only for SUP orders).

DSR # Move via convoy failed due to dislodged convoying fleet (only for,,
—CTO orders) .

NSO # No such order (only for SUP, CVY or CTO orders).

RET # Unit was dislodged and must retreat.

__init__ (phase_name, order_bytes, results, **kwargs)
Builds the response

3.1. diplomacy.daide.notifications 27

diplomacy, Release 1.1.2

Parameters
* phase_name — The name of the current phase (e.g. ‘S1901M”)
* order_bytes — The bytes received for the order
* results — An array containing the error codes.

class diplomacy.daide.notifications.TimeToDeadlineNotification (seconds,
**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a TME DAIDE response. Sends the time to the next deadline.

Syntax:

TME (seconds)

__init__ (seconds, **kwargs)
Builds the response :param seconds: Integer. The number of seconds before deadline

class diplomacy.daide.notifications.PowerInCivilDisorderNotification (power_name,

*rkwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a CCD DAIDE response. Sends the name of the power in civil disorder.

Syntax:

CCD (power)

__init__ (power_name, **kwargs)
Builds the response :param power_name: The name of the power being played.

class diplomacy.daide.notifications.PowerIsEliminatedNotification (power_name,

**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a OUT DAIDE response. Sends the name of the power eliminated.

Syntax:

OUT (power)

__init__ (power_name, **kwargs)
Builds the response :param power_name: The name of the power being played.

class diplomacy.daide.notifications.DrawNotification (**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a DRW DAIDE response. Indicates that the game has ended due to a draw

Syntax:

DRW

__dinit_ (**kwargs)
Builds the response

class diplomacy.daide.notifications.MessageFromNotification (from_power_name,
to_power_names,

message, **kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

28 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

Represents a FRM DAIDE response. Indicates that the game has ended due to a draw

Syntax:
FRM (power) (power power ...) (press_message)
FRM (power) (power power ...) (reply)

init__ (from_power_name, to_power_names, message, **kwargs)
Builds the response

class diplomacy.daide.notifications.SoloNotification (power_name, **kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents a SLO DAIDE response. Indicates that the game has ended due to a solo by the specified power

Syntax:

SLO (power)

__init__ (power_name, **kwargs)
Builds the response :param power_name: The name of the power being solo.

class diplomacy.daide.notifications.SummaryNotification (phase_name, pow-
ers, daide_users,
years_of _elimination,
*rewargs)

Bases: diplomacy.daide.notifications.DaideNotification
Represents a SMR DAIDE response. Sends the summary for each power at the end of the game

Syntax:

SMR (turn) (power_summary)

power_summary syntax:

power ('name') ('version') number_of_centres

power ('name') ('version') number_of_centres year_of_elimination

__init__ (phase_name, powers, daide_users, years_of _elimination, **kwargs)
Builds the Notification

class diplomacy.daide.notifications.TurnOffNotification (**kwargs)
Bases: diplomacy.daide.notifications.DaideNotification

Represents an OFF DAIDE response. Requests a client to exit

Syntax:

OFF

__init__ (**kwargs)
Builds the response

diplomacy.daide.notifications.MAP
alias of diplomacy.daide.notifications.MapNameNotification

diplomacy.daide.notifications.HLO
alias of diplomacy.daide.notifications.HelloNotification

diplomacy.daide.notifications.SCO
alias of diplomacy.daide.notifications.SupplyCenterNotification

3.1. diplomacy.daide.notifications 29

diplomacy, Release 1.1.2

diplomacy.daide.notifications.NOW

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.MIS

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.ORD

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.TME

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.CCD

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.OUT

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.DRW

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.FRM

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.SLO

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.SMR

alias of diplomacy.daide.notifications.

diplomacy.daide.notifications.OFF

alias of diplomacy.daide.notifications.

3.2 diplomacy.daide.requests

CurrentPositionNotification

MissingOrdersNotification

OrderResultNotification

TimeToDeadlineNotification

PowerInCivilDisorderNotification

PowerIsEliminatedNotification

DrawNotification

MessageFromNotification

SoloNotification

SummaryNotification

TurnOffNotification

Daide Requests - Contains a list of requests sent by client to server

class diplomacy.daide.requests.RequestBuilder

Bases: object
Builds DaideRequest from bytes or tokens

static from_bytes (daide_bytes, **kwargs)
Builds a request from DAIDE bytes

Parameters daide_bytes — The bytes representation of a request

Returns The DaideRequest built from the bytes

class diplomacy.daide.requests.DaideRequest (**kwargs)
Bases: diplomacy.communication.requests._AbstractGameRequest

Represents a DAIDE request.

__init_ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

30

Chapter 3

. diplomacy.daide

diplomacy, Release 1.1.2

class diplomacy.daide.requests.NameRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a NME DAIDE request. Can be sent by the client as soon as it connects to the server.

Syntax:

NME ('name') ('version')

__dinit__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.ObserverRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a NME DAIDE request. Can be sent by the client as soon as it connects to the server.

Syntax:

OBS

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.IAmRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a [AM DAIDE request. Can be sent by the client at anytime to rejoin the game.

Syntax:

IAM (power) (passcode)

__dinit__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.HelloRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a HLO DAIDE request. Sent by the client to request a copy of the HLO message.

Syntax:

HLO

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.MapRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a MAP DAIDE request. Sent by the client to request a copy of the MAP message.

Syntax:

MAP

3.2. diplomacy.daide.requests 31

diplomacy, Release 1.1.2

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.MapDefinitionRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a MDF DAIDE request. Sent by the client to request the map definition of the game.

Syntax:

MDF

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.SupplyCentreOwnershipRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a SCO DAIDE request. Sent by the client to request a copy of the last SCO message.

Syntax:

SCO

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.CurrentPositionRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a NOW DAIDE request. Sent by the client to request a copy of the last NOW message.

Syntax:

NOW

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.HistoryRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a HST DAIDE request. Sent by the client to request a copy of a previous ORD, SCO and NOW
messages.

Syntax:

HST (turn)

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.SubmitOrdersRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a SUB DAIDE request. Sent by the client to submit orders.

Syntax:

32 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

SUB (order) (order)
SUB (turn) (order) (order)
order syntax:
(unit) HLD # Hold
(unit) MTO province # Move to
(unit) SUP (unit) # Support
(unit) SUP (unit) MTO (prov_no_coast) # Support to move
(unit) CVY (unit) CTO province # Convoy
(unit) CTO province VIA (sea_prov sea_prov ...) # Convoy to via provinces
(unit) RTO province # Retreat to
(unit) DSB # Disband (R phase)
(unit) BLD # Build
(unit) REM # Remove (A phase)
(unit) WVE # Waive
__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.MissingOrdersRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a MIS DAIDE request. Sent by the client to request a copy of the current MIS message.

Syntax:

MIS

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.GoFlagRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a GOF DAIDE request. Sent by the client to notify that the client is ready to process the turn.

Syntax:

GOF

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.TimeToDeadlineRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a TME DAIDE request. Sent by the client to request a TME message or to request it at a later time.

Syntax:

TME
TME (seconds)

__init__ (**kwargs)
Constructor

3.2. diplomacy.daide.requests

33

diplomacy, Release 1.1.2

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.DrawRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a DRW DAIDE request. Sent by the client to notify that the client would accept a draw.

Syntax:

’DRW

LVL 10:

’DRW (power power ...)

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.SendMessageRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a SND DAIDE request

Syntax:

SND (power ...) (press_message)

SND (power ...) (reply)

SND (turn) (power ...) (press_message)
SND (turn) (power ...) (reply)

Press message syntax:

PRP (arrangement)
CCL (press_message)
FCT (arrangement)
TRY (tokens)

Reply syntax:

YES (press_message)
REJ (press_message)
BWX (press_message)
HUH (press_message)

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.NotRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a NOT DAIDE request. Sent by the client to cancel a previous request.

Syntax:

34 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

NOT (SUB) # Cancel all submitted orders
NOT (SUB (order)) # Cancel specific submitted order
NOT (GOF) # Do not process orders until the deadline
NOT (TME) # Cancel all requested time messages
NOT (TME (seconds)) # Cancel specific requested time message
NOT (DRW) # Cancel all draw requests
__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.AcceptRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a YES DAIDE request.

Syntax:

YES (MAP ('name'))
YES (SVE ('gamename'))

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.RejectRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a REJ DAIDE request.

Syntax:

REJ (SVE ('gamename'))

__dinit__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.ParenthesisErrorRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a PRN DAIDE request. Sent by the client to specify an error in the set of parenthesis.

Syntax:

PRN (message)

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.SyntaxErrorRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

3.2. diplomacy.daide.requests

35

diplomacy, Release 1.1.2

Represents a HUH DAIDE request. Sent by the client to specify an error in a message.

Syntax:

HUH (message)

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

class diplomacy.daide.requests.AdminMessageRequest (**kwargs)
Bases: diplomacy.daide.requests.DaideRequest

Represents a ADM DAIDE request. Can be sent by the client to send a message to all clients. Should not be

used for negotiation.

Syntax:

ADM ('message')

__init__ (**kwargs)
Constructor

parse_bytes (daide_bytes)
Builds the request from DAIDE bytes

diplomacy.daide.requests.NME

alias of diplomacy.daide.requests.

diplomacy.daide.requests.OBS
alias of diplomacy.daide.requests

diplomacy.daide.requests.IAM

alias of diplomacy.daide. requests.

diplomacy.daide.requests.HLO
alias of diplomacy.daide.requests

diplomacy.daide.requests.MAP

alias of diplomacy.daide. requests.

diplomacy.daide.requests.MDF
alias of diplomacy.daide.requests

diplomacy.daide.requests.SCO

alias of diplomacy.daide. requests.

diplomacy.daide.requests.NOW
alias of diplomacy.daide. requests

diplomacy.daide.requests.HST

alias of diplomacy.daide. requests.

diplomacy.daide.requests.SUB

alias of diplomacy.daide.requests.

diplomacy.daide.requests.MIS

alias of diplomacy.daide. requests.

diplomacy.daide.requests.GOF

alias of diplomacy.daide. requests.

NameRequest

.ObserverRequest

IAmRequest

.HelloRequest

MapRequest

.MapDefinitionRequest

SupplyCentreOwnershipRequest

HistoryRequest

SubmitOrdersRequest

MissingOrdersRequest

GoFlagRequest

.CurrentPositionRequest

36

Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

diplomacy.daide.requests.TME
alias of diplomacy.daide.requests.TimeToDeadlineRequest

diplomacy.daide.requests.DRW
alias of diplomacy.daide.requests.DrawRequest

diplomacy.daide.requests.SND
alias of diplomacy.daide. requests.SendMessageRequest

diplomacy.daide.requests.NOT
alias of diplomacy.daide.requests.NotRequest

diplomacy.daide.requests.YES
alias of diplomacy.daide.requests.AcceptRequest

diplomacy.daide.requests.REJ
alias of diplomacy.daide. requests.RejectRequest

diplomacy.daide.requests.PRN
alias of diplomacy.daide.requests.ParenthesisErrorRequest

diplomacy.daide.requests.HUH
alias of diplomacy.daide.requests.SyntaxErrorRequest

diplomacy.daide.requests.ADM
alias of diplomacy.daide.requests.AdminMessageRequest

3.3 diplomacy.daide.responses

DAIDE Responses - Contains a list of responses sent by the server to the client

class diplomacy.daide.responses.DaideResponse (**kwargs)
Bases: diplomacy.communication.responses._AbstractResponse

Represents a DAIDE response.

__init__ (**kwargs)
Constructor

class diplomacy.daide.responses.MapNameResponse (map_name, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a MAP DAIDE response. Sends the name of the current map to the client.

Syntax:

MAP ('name')

__init__ (map_name, **kwargs)
Builds the response :param map_name: String. The name of the current map.

class diplomacy.daide.responses.MapDefinitionResponse (map_name, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a MDF DAIDE response. Sends configuration of a map to a client

Syntax:

MDF (powers) (provinces) (adjacencies)

powers syntax:

3.3. diplomacy.daide.responses 37

diplomacy, Release 1.1.2

power power

power syntax:

AUS
ENG
FRA
GER
ITA
RUS
TUR

Austria
England
France
Germany
Italy
Russia

H o H R I W W

Turkey

provinces syntax:

(supply_centres)

(non_supply_centres)

supply_centres syntax:

(power centre centre ...)

(power centre centre ...)

supply_centres power syntax:

(power power ...)
AUS
ENG
FRA
GER
ITA
RUS
TUR
UNO

This 1is currently not supported
Austria

England

France

Germany

Italy

Russia

Turkey

S oW FH R W O KR W

Unknown power

non_supply_centres syntax:

province province

List of provinces

adjacencies syntax:

(prov_adjacencies)

(prov_adjacencies)

prov_adjacencies syntax:

province
—adjacent_prov

(unit_type adjacent_prov adjacent_prov ...)

(unit_type
-)

adjacent_prov,_

unit_type syntax:

AMY

FLT

(FLT coast)
—coast

List of provinces an army can move to
List of provinces a fleet can move to
List of provinces a fleet can move to

from the given,,

adjacent_prov syntax:

province
(province coast)

A province which can be moved to

A coast of a province that can be moved to

38

Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

__init__ (map_name, **kwargs)
Builds the response

Parameters map_name — The name of the map

class diplomacy.daide.responses.HelloResponse (power_name, passcode, level, deadline,

rules, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a HLO DAIDE response. Sends the power to be played by the client with the passcode to rejoin the

game and the details of the game.

Syntax:

HLO (power) (passcode) (variant) (variant)

Variant syntax:

LVL n # Level of the syntax accepted
MTL seconds # Movement time limit

RTL seconds # Retreat time limit

BTL seconds # Build time limit

DSD # Disables the time 1limit when a client disconects
AOA # Any orders accepted

LVL 10:

Variant syntax:

PDA # Accept partial draws

NPR # No press during retreat phases
NPB # No press during build phases
PTL seconds # Press time limit

__init__ (power_name, passcode, level, deadline, rules, **kwargs)
Builds the response

Parameters
* power_name — The name of the power being played.
* passcode — Integer. A passcode to rejoin the game.
* level - Integer. The daide syntax level of the game
* deadline - Integer. The number of seconds per turn (0 to disable)
* rules — The list of game rules.

class diplomacy.daide.responses.SupplyCenterResponse (powers_centers,

**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a SCO DAIDE response. Sends the current supply centre ownership.

Syntax:

map_name,

SCO (power centre centre ...) (power centre centre ...)

__init__ (powers_centers, map_name, **kwargs)
Builds the response

Parameters

3.3. diplomacy.daide.responses

39

diplomacy, Release 1.1.2

* powers_centers — A dict of {power_name: centers} objects

* map_name — The name of the map

class diplomacy.daide.responses.CurrentPositionResponse (phase_name, pow-

ers_units, powers_retreats,
*rewargs)

Bases: diplomacy.daide.responses.DaideResponse

Represents a NOW DAIDE response.

Syntax:

Sends the current turn, and the current unit positions.

NOW (turn) (unit) (unit)

Unit syntax:

power unit_type province
power unit_type province MRT

(province province ...)

init__ (phase_name, powers_units, powers_retreats, **kwargs)

Builds the response

Parameters

* phase_name — The name of the current phase (e.g. ‘S1901M”)

* powers — A list of diplomacy.engine.power. Power objects

class diplomacy.daide.responses.ThanksResponse (order_bytes, results, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a THX DAIDE response. Sends the result of an order after submission.

Syntax:

THX (order) (note)

Note syntax:

MBV # Order is OK.
FAR # Not adjacent.
NSP # No such province
NSU # No such unit
NAS # Not at sea (for a convoying fleet)
NSF # No such fleet (in VIA section of CTO or the unit performing a CVY)
NSA # No such army (for unit being ordered to CTO or for unit being CVYed)
NYU # Not your unit
NRN # No retreat needed for this unit
NVR # Not a valid retreat space
YSC # Not your supply centre
ESC # Not an empty supply centre
HSC # Not a home supply centre
NSC # Not a supply centre
CST # No coast specified for fleet build in StP, or an attempt
to build a fleet inland, or an army at sea.
NMB # No more builds allowed
NMR # No more removals allowed
NRS # Not the right season

__init__ (order_bytes, results, **kwargs)

Builds the response

40

Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

Parameters
* order_bytes — The bytes received for the order
* results — An array containing the error codes.

class diplomacy.daide.responses.MissingOrdersResponse (phase_name, power,
**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a MIS DAIDE response. Sends the list of unit for which an order is missing or indication about
required disbands or builds.

Syntax:

MIS (unit) (unit)
MIS (unit MRT (province province ...)) (unit MRT (province province ...))
MIS (number)

__init__ (phase_name, power, **kwargs)
Builds the response

Parameters
* phase_name — The name of the current phase (e.g. ‘S1901M”)

* power (diplomacy.engine.power.Power)— The power to check for missing or-
ders

class diplomacy.daide.responses.OrderResultResponse (phase_name, order_bytes, re-

sults, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a ORD DAIDE response. Sends the result of an order after the turn has been processed.

Syntax:

ORD (turn) (order) (result)
ORD (turn) (order) (result RET)

Result syntax:

SUC # Order succeeded (can apply to any order).

BNC # Move bounced (only for MTO, CTO or RTO orders).

CUT # Support cut (only for SUP orders).

DSR # Move via convoy failed due to dislodged convoying fleet (only for,
—~CTO orders).

NSO # No such order (only for SUP, CVY or CTO orders).

RET # Unit was dislodged and must retreat.

__init__ (phase_name, order_bytes, results, **kwargs)
Builds the response

Parameters
* phase_name — The name of the current phase (e.g. ‘S1901M”)
* order_bytes — The bytes received for the order
* results — An array containing the error codes.

class diplomacy.daide.responses.TimeToDeadlineResponse (seconds, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

3.3. diplomacy.daide.responses 41

diplomacy, Release 1.1.2

Represents a TME DAIDE response. Sends the time to the next deadline.

Syntax:

TME (seconds)

__init__ (seconds, **kwargs)
Builds the response

Parameters seconds — Integer. The number of seconds before deadline

class diplomacy.daide.responses.AcceptResponse (request_bytes, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a YES DAIDE request.

Syntax:

YES (TME (seconds)) # Accepts to set the time_
—when a
TME message will be sent

YES (NOT (TME)) # Accepts to cancel all_,
—requested time messages

YES (NOT (TME (seconds))) # Accepts to cancel a_,
—specific requested time message

YES (GOF) # Accepts to wait until the,,

—deadline before processing

the orders for the turn
YES (NOT (GOF)) # Accepts to cancel to wait,,
—until the deadline before

processing the orders for
—~the turn

YES (DRW) # Accepts to draw

YES (NOT (DRW)) # Accepts to cancel a draw,
—request

LVL 10:

YES (DRW (power power ...)) # Accepts a partial draw

YES (NOT (DRW (power power ...))) # Accepts to cancel a partial,,

—draw request

(? not mentinned in the
—DAIDE doc)
YES (SND (power power ...) (press_message)) # Accepts a press message
YES (SND (turn) (power power ...) (press_message)) # Accepts a press message

__init__ (request_bytes, **kwargs)
Builds the response

Parameters request_bytes — The bytes received for the request

class diplomacy.daide.responses.RejectResponse (request_bytes, **kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a REJ DAIDE request.

Syntax:
REJ (NME ('name') ('version')) # Rejects a client in the game
REJ (IAM (power) (passcode)) # Rejects a client to rejoin,,

—~the game

(continues on next page)

42 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

(continued from previous page)

—previous

—~deadline before processing

the orders
REJ (NOT (GOF)) # Rejects to
—until the deadline before

processing
—the turn
REJ (TME (seconds)) # Rejects to
—when a

ORD, SCO and NOW messages

for the turn
cancel to wait,,

the orders for

set the time,,

TME message will be sent

REJ (NOT (TME)) # Rejects to cancel all,,
—requested time messages

REJ (NOT (TME (seconds))) # Rejects to cancel a_,
—specific requested time message

REJ (ADM ('name') ('message') # Rejects the admin message
REJ (DRW) # Rejects to draw

REJ (HLO) # Rejects to send the HLO_
—message
REJ (HST (turn)) # Rejects to send a copy of a_

REJ (SUB (order) (order)) # Rejects a submition of
—orders

REJ (SUB (turn) (order) (order)) # Rejects a submition of_
—orders

REJ (NOT (SUB (order))) # Rejects a cancellation of a_
—submitted order

REJ (MIS) # Rejects to send a copy of,
—~the current MIS message

REJ (GOF) # Rejects to wait until the

REJ (NOT (DRW)) # Rejects to cancel a draw,
—request

LVL 10:

REJ (DRW (power power ...)) # Rejects to partially draw
REJ (NOT (DRW (power power ...))) # Rejects to cancel a partial_,
—draw request

REJ (SND (power power ...) (press_message)) # Rejects a press message

REJ (SND (turn) (power power ...) (press_message)) # Rejects a press message

__init__ (request_bytes, **kwargs)
Builds the response

Parameters request_bytes — The bytes received for the request

class diplomacy.daide.responses.NotResponse (response_bytes, **kwargs)

Bases: diplomacy.daide.responses.DaideResponse
Represents a NOT DAIDE response.

Syntax:

NOT (CCD (power))

__init__ (response_bytes, **kwargs)
Builds the response :param response_bytes: The bytes received for the request

class diplomacy.daide.responses.PowerInCivilDisorderResponse (power_name,
**kwargs)

3.3. diplomacy.daide.responses

43

diplomacy, Release 1.1.2

Bases: diplomacy.daide.responses.DaideResponse
Represents a CCD DAIDE response. Sends the name of the power in civil disorder.

Syntax:

CCD (power)

__init__ (power_name, **kwargs)
Builds the response

Parameters power_name — The name of the power being played.

class diplomacy.daide.responses.PowerIsEliminatedResponse (power_name,

**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a OUT DAIDE response. Sends the name of the power eliminated.

Syntax:

OUT (power)

__init__ (power_name, **kwargs)
Builds the response

Parameters power_name — The name of the power being played.

class diplomacy.daide.responses.ParenthesisErrorResponse (request_bytes,

**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a PRN DAIDE response.

Syntax:

PRN (message)

__init__ (request_bytes, **kwargs)
Builds the response

Parameters request_bytes — The bytes received for the request

class diplomacy.daide.responses.SyntaxErrorResponse (request_bytes, error_index,
**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

Represents a HUH DAIDE response.

Syntax:

HUH (message)

__init__ (request_bytes, error_index, **kwargs)
Builds the response

Parameters
* request_bytes — The bytes received for the request
e error_index — The index of the faulty token

class diplomacy.daide.responses.TurnOffResponse (**kwargs)
Bases: diplomacy.daide.responses.DaideResponse

44 Chapter 3. diplomacy.daide

diplomacy, Release 1.1.2

Represents an OFF DAIDE response. Requests a client to exit

Syntax:

OFF

__init__ (**kwargs)
Builds the response

diplomacy.daide.responses.MAP

alias of diplomacy.daide.responses.

diplomacy.daide.responses.MDF

alias of diplomacy.daide.responses.

diplomacy.daide.responses.HLO

alias of diplomacy.daide.responses.

diplomacy.daide.responses.SCO

alias of diplomacy.daide.responses.

diplomacy.daide.responses.NOW

alias of diplomacy.daide.responses.

diplomacy.daide.responses.THX

alias of diplomacy.daide.responses.

diplomacy.daide.responses.MIS

alias of diplomacy.daide.responses.

diplomacy.daide.responses.ORD

alias of diplomacy.daide.responses.

diplomacy.daide.responses.TME

alias of diplomacy.daide.responses.

diplomacy.daide.responses.YES
alias of diplomacy.daide.responses

diplomacy.daide.responses.REJ

alias of diplomacy.daide.responses.

diplomacy.daide.responses.NOT

alias of diplomacy.daide.responses.

diplomacy.daide.responses.CCD

alias of diplomacy.daide.responses.

diplomacy.daide.responses.OUT

alias of diplomacy.daide.responses.

diplomacy.daide.responses.OFF

alias of diplomacy.daide.responses.

diplomacy.daide.responses.PRN

alias of diplomacy.daide.responses.

diplomacy.daide.responses.HUH

alias of diplomacy.daide.responses.

MapNameResponse

MapDefinitionResponse

HelloResponse

SupplyCenterResponse

CurrentPositionResponse

ThanksResponse

MissingOrdersResponse

OrderResultResponse

TimeToDeadlineResponse

.AcceptResponse

Re jectResponse

NotResponse

PowerInCivilDisorderResponse

PowerIsEliminatedResponse

TurnOffResponse

ParenthesisErrorResponse

SyntaxErrorResponse

3.3. diplomacy.daide.responses

45

diplomacy, Release 1.1.2

46 Chapter 3. diplomacy.daide

CHAPTER 4

diplomacy.engine

4.1 diplomacy.engine.game

Game
* Contains the game engine

class diplomacy.engine.game .Game (game_id=None, **kwargs)
Bases: diplomacy.utils. jsonable.Jsonable

Game class.
Properties:
e combat:

— Dictionary of dictionaries containing the strength of every attack on a location (including units who
don’t count toward dislodgment)

— Format: {loc: attack_strength: [[‘src loc’, [support loc]]}

- e.g. { "MUN': { 1 : [['"A MUN', [] 1, ['A RUH', [1 1 1, 2 : [['A
SIL', ['A BOH'] 1 1 } }. MUN is holding, being attack without support from RUH and
being attacked with support from SIL (S from BOH)

e command: contains the list of finalized orders to be processed (same format as orders, but without .order).
e.g. {'APAR’: ‘- AMAR’}

 controlled_powers: (for client games only). List of powers currently controlled by associated client user.

e convoy_paths:

Contains the list of remaining convoys path for each convoyed unit to reach their destination

Note: This is used to see if there are still active convoy paths remaining.

Note: This also include the start and ending location

e.g. {‘APAR’: [['PAR’, ‘ION’NAO’, ‘MAR], [‘PAR’, ‘ION’, ‘MAR’]], ... }

47

diplomacy, Release 1.1.2

convoy_paths_possible:

— Contains the list of possible convoy paths given the current fleet locations or None

— e.g. [(START_LOC, {Fleets Req}, {possible dest}), ...]
convoy_paths_dest:

— Contains a dictionary of possible paths to reach destination from start or None

— e.g. {start_loc: {dest_loc_1: [{fleets}, {fleets}, {fleets}], dest_loc_2: [{fleets, fleets}]}
daide_port: (for client games only). Port when a DAIDE bot can connect, to play with this game.
deadline: integer: game deadline in seconds.

dislodged: contains a dictionary of dislodged units (and the site that dislodged them’). e.g. { ‘A PAR’:
‘MAR’ }

error: contains a list of errors that the game generated. e.g. ['NO MASTER SPECIFIED’]
fixed_state:

used when game is a context of a with-block.

Store values that define the game state when entered in with-statement.

Compared to actual fixed state to detect any changes in methods where changes are not allowed.

Reset to None when exited from with-statement.

game_id: String that contains the current game’s ID. e.g. ‘123456’
lost:

— Contains a dictionary of centers that have been lost during the term

- e.g. {'PAR’: ‘FRANCE’} to indicate that PAR was lost by France (previous owner)
map: Contains a reference to the current map (Map instance). e.g. map = Map(‘standard’)

map_name: Contains a reference to the name of the map that was loaded (or a path to a custom map file)
e.g. map_name = ‘standard’ or map_name = ‘/some/path/to/file.map’

messages (for non-observer games only):
— history of messages exchanged inside this game.
— Sorted dict mapping message timestamps to message objects (instances of diplomacy.Message).
— Format: {message.time_sent => message }

message_history:

history of messages through all played phases.

Sorted dict mapping a short phase name to a message dict (with same format as field message describe
above).

Format: {short phase name => {message.time_sent => message} }

Wrapped in a sorted dict at runtime, see method __init__ ().
meta_rules: contains the rules that have been processed as directives. e.g. ['NO_PRESS’]
n_controls: integer:

— exact number of controlled powers allowed for this game.

48

Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

— If game start mode is not START_MASTER, then game starts as soon as this number of powers are
controlled.

* no_rules: contains the list of rules that have been disabled (prefixed with ‘!”). e.g ['NO_PRESS’]
* note: a note to display on the rendering. e.g. “Winner: FRANCE’
* observer_level (for client games only):
— Highest observation level allowed for associated client user.
— Either “master_type”, “omniscient_type” or “observer_type”.
* orders: contains the list of current orders (not yet processed). e.g. { ‘A PAR’: - A MAR’}
¢ ordered_units:
— Contains a dictionary of the units ordered by each power in the last phase
- e.g. {‘'FRANCE’: ['A PAR’, ‘A MAR’], ‘ENGLAND’: ... }

e order_history:

Contains the history of orders from each player from the beginning of the game.

Sorted dict mapping a short phase name to a dictionary of orders (powers names as keys, powers
orders as values).

Format: {short phase name => {power name => [orders]} }

Wrapped in a sorted dict at runtime, see method __init__ ().
* outcome: contains the game outcome. e.g. [lastPhase, victorl, victor2, victor3]
« phase: string that contains a long representation of the current phase. e.g. ‘SPRING 1901 MOVEMENT’

* phase_type: indicates the current phase type. e.g. ‘M’ for Movement, ‘R’ for Retreats, ‘A’ for Adjustment,
‘-* for non-playing phase

* popped: contains a list of all retreaters who didn’t make it. e.g. [‘A PAR’, ‘A MAR’]
* powers:
— Contains a dictionary mapping power names to power instances in the game
- e.g. { ' FRANCE’: FrancePower, ‘ENGLAND’: EnglishPower, ... }
* registration_password: ** hashed ** version of password to be sent by a player to join this game.
* renderer: contains the object in charge of rendering the map. e.g. Renderer()
* result:
— Contains the result of the action for each unit.

— In Movement Phase, result can be ‘no convoy’, ‘bounce’, ‘void’, ‘cut’, ‘dislodged’, ‘disrupted’. e.g.
{ ‘APAR’: [‘cut’, ‘void’] }

— In Retreats phase, result can be ‘bounce’, ‘disband’, ‘void’. e.g. { ‘A PAR’: [‘cut’, ‘void’] }

— In Adjustments phase, result can be ‘void’ or . e.g. { ‘A PAR’: [*, ‘void’] } # e.g. to indicate a
successful build, and a void build.

e result_history:
— Contains the history of orders results for all played phases.
— Sorted dict mapping a short phase name to a dictionary of order results for this phase.

— Dictionary of order results maps a unit to a list of results. See field result for more details.

4.1.

diplomacy.engine.game 49

diplomacy, Release 1.1.2

— Format: {short phase name => {unit => [results]} }
— Wrapped in a sorted dict at runtime, see method __init__ ().
* role: Either a power name (for player game) or a value in diplomacy.utils.strings. ALL._ROLE_TYPES.

* rules: Contains a list of active rules. e.g. [‘NO_PRESS’, ...]. Default is diplomacy.utils.
constants.DEFAULT_GAME_RULES.

* state_history:

history of previous game states (returned by method get_state()) for this game.

Sorted dict mapping a short phase name to a game state.

Each game state is associated to a timestamp generated when state is created by method get_state().

State timestamp then represents the “end” time of the state, ie. time when this state was saved and
archived in state history.

Format: {short phase name => state}

Wrapped in a sorted dict at runtime, see method __init__ ().

» status: game status (forming, active, paused, completed or canceled). Possible values in diplo-
macy.utils.strings. ALL_GAME_STATUSES.

¢ supports:
— Contains a dictionary of support for each unit
— Format: { ‘unit’: [nb_of_support, [list of supporting units]] }

- eg { ‘APAR’: [2, ['A MAR’]] }. 2 support, but the Marseille support does NOT count toward
dislodgment

* timestamp_created: timestamp in microseconds when game object was created on server side.
* victory:
— Indicates the number of SUPPLY [default] centers one power must control to win the game
— Format: [reqFirstYear, reqSecondYear, ..., reqAllFurtherYears]
- e.g. [10,10,18] for 10 the 1st year, 10 the 2nd year, 18 year 3+
* win - Indicates the minimum number of centers required to win. e.g. 3

e zobrist_hash - Contains the zobrist hash representing the current state of this game. e.g.
12545212418541325

Cache properties:
¢ unit_owner_cache:
— Contains a dictionary with (unit, coast_required) as key and owner as value
— Set to Note when the cache is not built
— e.g. {(CAPAR’, True): <FRANCE>, (‘A PAR’, False): <FRANCE>), ... }

__init__ (game_id=None, **kwargs)
Constructor

power
(only for player games) Return client power associated to this game.

Returns a Power object.

50 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

Return type diplomacy.engine.power.Power

is_game_done
Returns a boolean flag that indicates if the game is done

current_state ()
Returns the game object. To be used with the following syntax:

with game.current_state():
orders = players.get_orders (game, power_name)
game.set_orders (power_name, orders)

is_fixed state_unchanged (log_error=True)
Check if actual state matches saved fixed state, if game is used as context of a with-block.

Parameters log_error — Boolean that indicates to log an error if state has changed
Returns boolean that indicates if the state has changed.

is_player game ()
Return True if this game is a player game.

is_observer_game ()
Return True if this game is an observer game.

is_omniscient_game ()
Return True if this game is an omniscient game.

is_server_game ()
Return True if this game is a server game.

is_valid password (registration_password)
Return True if given plain password matches registration password.

is_controlled (power_name)
Return True if given power name is currently controlled.

Parameters power_name (str)— power name
Return type bool

is_dummy (power_name)
Return True if given power name is not currently controlled.

does_not_wait ()
Return True if the game does not wait anything to process its current phase. The game is not waiting
is all controlled powers have defined orders and wait flag set to False. If it’s a solitaire game (with no
controlled powers), all (dummy, not eliminated) powers must have defined orders and wait flag set to
False. By default, wait flag for a dummy power is True. Note that an empty orders set is considered as a
defined order as long as it was explicitly set by the power controller.

has_power (power_name)
Return True if this game has given power name.

has_expected_controls_count ()
Return True if game has expected number of map powers to be controlled. If True, the game can start (if
not yet started).

count_controlled_powers ()
Return the number of controlled map powers.

get_controlled_power_ names (username)
Return the list of power names currently controlled by given user name.

. diplomacy.engine.game 51

diplomacy, Release 1.1.2

get_expected_controls_count ()
Return the number of map powers expected to be controlled in this game. This number is either specified
in settings or the number of map powers.

get_dummy power_ names ()
Return sequence of not eliminated dummy power names.

get_dummy_unordered_power_names ()
Return a sequence of playable dummy power names without orders but still orderable and with orderable
locations.

get_controllers ()
Return a dictionary mapping each power name to its current controller name.

get_controllers_timestamps ()
Return a dictionary mapping each power name to its controller timestamp.

get_random_power_name ()
Return a random power name from remaining dummy power names. Raise an exception if there are no
dummy power names.

get_latest_timestamp ()
Return timestamp of latest data saved into this game (either current state, archived state or message).

Returns a timestamp
Return type int

classmethod filter messages (messages, game_role, timestamp_from=None, times-

tamp_to=None)
Filter given messages based on given game role between given timestamps (bounds included). See method

diplomacy.utils.SortedDict.sub() about bound rules.
Parameters

* messages (diplomacy.utils.sorted_dict.SortedDict) — a sorted dictio-
nary of messages to filter.

* game_role — game role requiring messages. Either a special power name (Power-
Name.OBSERVER or PowerName.OMNISCIENT), a power name, or a list of power
names.

* timestamp from - lower timestamp (included) for required messages.
* timestamp_to — upper timestamp (included) for required messages.

Returns a dict of corresponding messages (empty if no corresponding messages found), map-
ping messages timestamps to messages.

get_phase_history (from_phase=None, to_phase=None, game_role=None)
Return a list of game phase data from game history between given phases (bounds included). Each
GamePhaseData object contains game state, messages, orders and order results for a phase.

Parameters
* from_phase - either:
— astring: phase name
— an integer: index of phase in game history
— None (default): lowest phase stored in game history
* to_phase - cither:

— astring: phase name

52 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

— an integer: index of phase in game history
— None (default): latest phase stored in game history

* game_role — (optional) role of game for which phase history is retrieved. If none,
messages in game history will not be filtered.

Returns a list of GamePhaseHistory objects

get_phase_from history (short_phase_name, game_role=None)
Return a game phase data corresponding to given phase from phase history.

phase_history from_timestamp (timestamp)
Return list of game phase data from game history for which state timestamp >= given timestamp.

extend_phase_history (game_phase_data)
Add data from a game phase to game history.

Parameters game_phase_data (GamePhaseData) — a GamePhaseData object.

set_status (status)
Set game status with given status (should be in diplomacy.utils.strings.ALL_GAME_STATUSES).

draw (winners=None)
Force a draw for this game, set status as COMPLETED and finish the game.

Parameters winners — (optional) either None (all powers remaining to map are considered
winners) or a sequence of required power names to be considered as winners.

Returns a couple (previous state, current state) with game state before the draw and game state
after the draw.

set_controlled (power_name, username)
Control power with given username (may be None to set dummy power). See method diplo-
macy.Power#set_controlled.

update_dummy_powers (dummy_power_names)
Force all power associated to given dummy power names to be uncontrolled.

Parameters dummy_power_names — Sequence of required dummy power names.

update_powers_controllers (powers_controllers, timestamps)
Update powers controllers.

Parameters

* powers_controllers (dict) — a dictionary mapping a power name to a controller
name.

* timestamps - a dictionary mapping a power name to timestamp when related controller
(in powers_controllers) was associated to power.

new_power_message (recipient, body)
Create a undated (without timestamp) power message to be sent from a power to another via server. Server
will answer with timestamp, and message will be updated and added to local game messages.

Parameters
* recipient - recipient power name (string).
* body — message body (string).

Returns a new GameMessage object.

Return type GameMessage

4.1.

diplomacy.engine.game 53

diplomacy, Release 1.1.2

new_global_message (body)
Create an undated (without timestamp) global message to be sent from a power via server. Server will
answer with timestamp, and message will be updated and added to local game messages.

Parameters body — message body (string).
Returns a new GameMessage object.
Return type Message

add_message (message)
Add message to current game data. Only a server game can add a message with no timestamp: game will
auto-generate a timestamp for the message.

Parameters message — a GameMessage object to add.
Returns message timestamp.
Return type int

has_draw_vote ()
Return True if all controlled non-eliminated powers have voted YES to draw game at current phase.

count_voted ()
Return the count of controlled powers who already voted for a draw for current phase.

clear_vote ()
Clear current vote.

get_map_ power_names ()
Return sequence of map power names.

get_current_phase ()
Returns the current phase (format ‘S1901M’ or ‘FORMING’ or ‘COMPLETED’)

get_units (power_name=None)
Retrieves the list of units for a power or for all powers

Parameters power_name — Optional. The name of the power (e.g. 'FRANCE ") or None for
all powers

Returns A listof units (e.g. ['A PAR', 'A MAR'])if apower name is provided or a dictio-
nary of powers with their units if None is provided (e.g. { '"FRANCE': [...], ...})

Note: Dislodged units will appear with a leading asterisk (e.g. ' *A PAR')

get_centers (power_name=None)
Retrieves the list of owned supply centers for a power or for all powers

Parameters power_name — Optional. The name of the power (e.g. ‘FRANCE’) or None for
all powers

Returns A list of supply centers (e.g. [‘PAR’, ‘MAR’]) if a power name is provided or a dic-
tionary of powers with their supply centers if None is provided (e.g. {‘FRANCE’: [...],
-}

get_orders (power_name=None)
Retrieves the orders submitted by a specific power, or by all powers

Parameters power_name — Optional. The name of the power (e.g. ‘FRANCE’) or None for
all powers

Returns A list of orders (e.g. [‘A PAR H’, ‘A MAR - BUR’]) if a power name is provided or a
dictionary of powers with their orders if None is provided (e.g. { FRANCE’: [‘A PAR H’,
‘AMAR-BUR’,...],...}

Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

get_orderable_locations (power_name=None)
Find the location requiring an order for a power (or for all powers)

Parameters power_name — Optionally, the name of the power (e.g. ‘FRANCE’) or None for
all powers

Returns A list of orderable locations (e.g. ['PAR’, ‘MAR’]) if a power name is provided or a
dictionary of powers with their orderable locations if None is not provided (e.g. { FRANCE’:

L..],...}

get_order_status (power_name=None, unit=None, loc=None)

[E 23

Returns a list or a dict representing the order status (’, ‘no convoy’, ‘bounce’, ‘void’, ‘cut’, ‘dislodged’,
‘disrupted’) for orders submitted in the last phase

Parameters

* power_name — Optional. If provided (e.g. ‘FRANCE’) will only return the order status
of that power’s orders

* unit — Optional. If provided (e.g. ‘A PAR’) will only return that specific unit order status.

* loc — Optional. If provided (e.g. ‘PAR’) will only return that specific loc order status.
Mutually exclusive with unit

* phase_type — Optional. Returns the results of a specific phase type (e.g. ‘M’, ‘R’, or
‘A
Returns
e If unit is provided a list (e.g. [] or [‘void’, ‘dislodged’])

* If loc is provided, a couple of unit and list (e.g. (‘A PAR’, [‘void’, ‘dislodged’])), or (loc,
[]) if unit not found.

* If power is provided a dict (e.g. { ‘A PAR’: [‘'void’], ‘A MAR’: []})

« Otherwise a 2-level dict (e.g. {‘FRANCE: {‘A PAR’: [‘void’], ‘A MAR’: []}, ‘ENG-
LAND’: {},... }

get_power (power_name)
Retrieves a power instance from given power name.

Parameters power_name — name of power instance to retrieve. Power name must be as given
in map file.

Returns the power instance, or None if power name is not found.
Return type diplomacy.engine.power. Power

set_units (power_name, units, reset=False)
Sets units directly on the map

Parameters
* power_name — The name of the power who will own the units (e.g. ‘FRANCE")

* units — An unit (e.g. ‘A PAR’) or a list of units (e.g. [‘A PAR’, ‘A MAR’]) to set Note
units starting with a “*” will be set as dislodged

* reset — Boolean. If, clear all units of the power before setting them
Returns Nothing

set_centers (power_name, centers, reset=False)
Transfers supply centers ownership

4.1. diplomacy.engine.game 55

diplomacy, Release 1.1.2

Parameters

e power_name — The name of the power who will control the supply centers (e.g.
‘FRANCE’)

* centers — Aloc (e.g. ‘PAR’) or a list of locations (e.g. [PAR’, ‘MAR’]) to transfer

* reset —Boolean. If, removes ownership of all power’s SC before transferring ownership
of the new SC

Returns Nothing

set_orders (power_name, orders, expand=True, replace=True)
Sets the current orders for a power

Parameters
* power_name — The name of the power (e.g. ‘FRANCE’)
* orders — The list of orders (e.g. [‘A MAR - PAR’, ‘A PAR - BER’, ...])

* expand — Boolean. If set, performs order expansion and reformatting (e.g. adding unit
type, etc.) If false, expect orders in the following format. False gives a performance
improvement.

* replace — Boolean. If set, replace previous orders on same units, otherwise prevents
re-orders.

Returns Nothing

Expected format:

A ILON H, F IRI - MAO, A IRI - MAO VIA, A WAL S F LON, A WAL S F MAO - IRI,
F NWG C A NWY - EDI, A IRO R MAO, A IRO D, A LON B, F LIV B

set_wait (power_name, wait)
Set wait flag for a power.

Parameters
* power_name — name of power to set wait flag.
* wait — wait flag (boolean).

clear_units (power_name=None)
Clear the power’s units

Parameters power_name — Optional. The name of the power whose units will be cleared (e.g.
‘FRANCE’), otherwise all units on the map will be cleared

Returns Nothing

clear_centers (power_name=None)
Removes ownership of supply centers

Parameters power_name — Optional. The name of the power whose centers will be cleared
(e.g. ‘FRANCE’), otherwise all centers on the map will lose ownership.

Returns Nothing

clear_orders (power_name=None)
Clears the power’s orders

Parameters power_name — Optional. The name of the power to clear (e.g. ‘FRANCE’) or
will clear orders for all powers if None.

56 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

Returns Nothing

clear_cache ()
Clears all caches

set_current_phase (new_phase)
Changes the phase to the specified new phase (e.g. ‘S1901M”)

render (incl_orders=True, incl_abbrev=False, output_format="svg’, output_path=None)
Renders the current game and returns its image representation

Parameters

* incl_orders (bool, optional)- Optional. Flag to indicate we also want to ren-
der orders.

* incl_abbrev (bool, optional) - Optional. Flag to indicate we also want to dis-
play the provinces abbreviations.

* output_format (str, optional) — The desired output format. Currently, only
‘svg’ is supported.

* output_path (str | None, optional)— Optional. The full path where to save
the rendering on disk.

Returns The rendered image in the specified format.

add_rule (rule)
Adds a rule to the current rule list

Parameters rule — Name of rule to add (e.g. ‘NO_PRESS’)
Returns Nothing

remove_rule (rule)
Removes a rule from the current rule list

Parameters rule — Name of rule to remove (e.g. ‘NO_PRESS’)
Returns Nothing

load_map (reinit_powers=True)
Load a map and process directives

Parameters reinit_powers — Boolean. If true, empty powers dict.
Returns Nothing, but stores the map in self.map

process ()
Processes the current phase of the game.

Returns game phase data with data before processing.

build caches ()
Rebuilds the various caches

rebuild_hash ()
Completely recalculate the Zobrist hash

Returns The updated hash value

get_hash(()
Returns the zobrist hash for the current game

update_hash (power, unit_type=", loc=", is_dislodged=Fualse, is_center=False, is_home=False)
Updates the zobrist hash for the current game

. diplomacy.engine.game 57

diplomacy, Release 1.1.2

Parameters
» power — The name of the power owning the unit, supply center or home
* unit_type — Contains the unit type of the unit being added or remove from the board
(‘A’ or ‘F’)
* loc - Contains the location of the unit, supply center, of home being added or remove
* is_dislodged — Indicates that the unit being added/removed is dislodged
* is_center - Indicates that the location being added/removed is a supply center
* is_home — Indicates that the location being added/removed is a home
Returns Nothing

get_phase_data ()
Return a GamePhaseData object representing current game.

set_phase_data (phase_data, clear_history=True)
Set game from phase data.

Parameters

* phase_data — either a GamePhaseData or a list of GamePhaseData. If phase_data is a
GamePhaseData, it will be treated as a list of GamePhaseData with 1 element. Last phase
data in given list will be used to set current game internal state. Previous phase data in
given list will replace current game history.

* clear_history - Indicate if we must clear game history fields before update.

get_state()
Gets the internal saved state of the game. This state is intended to represent current game view (powers
states, orders results for previous phase, and few more info). See field message_history to get messages
from previous phases. See field order_history to get orders from previous phases. To get a complete state
of all data in this game object, consider using method Game.to_dict().

Parameters make_copy — Boolean. If true, a deep copy of the game state is returned, other-
wise the attributes are returned directly.

Returns The internal saved state (dict) of the game

set_state (state, clear_history=True)
Sets the game from a saved internal state

Parameters

e state — The saved state (dict)

* clear_history — Boolean. If true, all game histories are cleared.
Returns Nothing

get_all_possible_orders ()
Computes a list of all possible orders for all locations

Returns A dictionary with locations as keys, and their respective list of possible orders as values

4.2 diplomacy.engine.map

Map - Contains the map object which represents a map where the game can be played

58 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

class diplomacy.engine.map.Map (name="standard’, use_cache=True)
Bases: object

Map Class

Properties:

abbrev: Contains the power abbreviation, otherwise defaults to first letter of PowerName e.g. {‘EN-
GLISH’: ‘E’}

abuts_cache: Contains a cache of abuts for [‘A,F’] between all locations for orders [‘S’, ‘C’, *-‘] e.g. {(A,
PAR, -, MAR): 1, ...}

aliases: Contains a dict of all the aliases (e.g. full province name to 3 char) e.g. {‘EAST’: ‘EAS’, ‘STP (
/SC)’: ‘STP/SC’, ‘FRENCH’: ‘FRANCE’, ‘BUDAPEST’: ‘BUD’, ‘NOR’: ‘NWY’, ... }

centers: Contains a dict of owned supply centers for each player at the beginning of the map e.g. { ‘RUS-
SIA’: ['MOS’, ‘SEV’, ‘STP’, ‘WAR’], ‘FRANCE’: ['‘BRE’, ‘MAR’, ‘PAR’], ... }

convoy_paths: Contains a list of all possible convoys paths bucketed by number of fleets format: {nb of
fleets: [(START_LOC, {FLEET LOC}, {DEST LOCS})]}

dest_with_coasts: Contains a dictionary of locs with all destinations (incl coasts) that can be reached e.g.
{‘'PAR’: [‘BRE’, ‘PIC’, ‘BUR’, ...], ...}

dummies: Indicates the list of powers that are dummies e.g. [‘'FRANCE’, ‘ITALY’]

error: Contains a list of errors that the map generated e.g. [DUPLICATE MAP ALIAS OR POWER:
JAPAN’]

files: Contains a list of files that were loaded (e.g. USES keyword) e.g. [‘standard.map’, ‘stan-
dard.politics’, ‘standard.geography’, ‘standard.military’]

first_year: Indicates the year where the game is starting. e.g. 1901

flow: List that contains the seasons with the phases e.g. [‘SPRING:MOVEMENT,RETREATS’,
‘FALL:MOVEMENT,RETREATS’, ‘WINTER:ADJUSTMENTS’]

flow_sign: Indicate the direction of flow (1 is positive, -1 is negative) e.g. 1

homes: Contains the list of supply centers where units can be built (i.e. assigned at the beginning) e.g.
{‘RUSSIA’: ['MOS’, ‘SEV’, ‘STP’, ‘WAR’], ‘FRANCE’: [‘BRE’, ‘MAR’, ‘PAR’], ... }

inhabits: List that indicates which power have a INHABITS, HOME, or HOMES line e.g. [FRANCE’]

keywords: Contains a dict of keywords to parse status files and orders e.g. { ‘BUILDS’: ‘B’, >’: ’, ‘SC’:

‘/SC’, ‘REMOVING’: ‘D’, ‘WAIVED’: ‘V’, ‘ATTACK’: ©, ... }
loc_abut: Contains a adjacency list for each province e.g. {‘LVP’: [‘CLY’, ‘edi’, ‘IRI’, ‘NAO’, “‘WAL’,
‘yor'], ...}

loc_coasts: Contains a mapping of all coasts for every location e.g. {‘PAR’: [‘PAR’], ‘BUL: ['BUL’,
‘BUL/EC’, ‘BUL/SC’], ... }

loc_name: Dict that indicates the 3 letter name of each location e.g. {‘GULF OF LYON’: ‘LYO’,
‘BREST’: ‘BRE’, ‘BUDAPEST’: ‘BUD’, ‘RUHR’: ‘RUH’, ... }

loc_type: Dict that indicates if each location is “‘WATER’, ‘COAST’, ‘LAND’, or ‘PORT’ e.g. { MAO’:
‘WATER’, ‘SER’: ‘LAND’, ‘SYR’: ‘COAST’, ‘MOS’: ‘LAND’, ‘VEN’: ‘COAST’, ... }

locs: List of 3 letter locations (With coasts) e.g. [‘ADR’, ‘AEG’, ‘ALB’, ‘ANK’, ‘APU’, ‘ARM’, ‘BAL’,
‘BAR’, ‘BEL’, ‘BER’, ...]

name: Name of the map (or full path to a custom map file) e.g. ‘standard’ or ‘/some/path/to/file.map’

4.2. diplomacy.engine.map 59

diplomacy, Release 1.1.2

L]

own_word: Dict to indicate the word used to refer to people living in each power’s country e.g. {‘RUS-
SIA’: ‘RUSSIAN’, ‘FRANCE’: ‘FRENCH’, ‘UNOWNED’: ‘UNOWNED’, “TURKEY’: ‘TURKISH’, ...

}
owns: List that indicates which power have a OWNS or CENTERS line e.g. [‘FRANCE’]

phase: String to indicate the beginning phase of the map e.g. ‘SPRING 1901 MOVEMENT’

phase_abbrev: Dict to indicate the 1 letter abbreviation for each phase e.g. {‘A’: ‘ADJUSTMENTS’, ‘M’:
‘MOVEMENT’, ‘R’: ‘RETREATS’}

pow_name: Dict to indicate the power’s name e.g. {‘RUSSIA’: ‘RUSSIA’, ‘FRANCE’: ‘FRANCE’,
‘TURKEY’: ‘TURKEY’, ‘GERMANY’: ‘GERMANY’, ... }

powers: Contains the list of powers (players) in the game e.g. [‘AUSTRIA’, ‘ENGLAND’, ‘FRANCE’,
‘GERMANY’, ‘ITALY’, ‘RUSSIA’, ‘TURKEY’]

root_map: Contains the name of the original map file loaded (before the USES keyword are applied) A
map that is called with MAP is the root_map. e.g. ‘standard’

rules: Contains a list of rules used by all variants (for display only) e.g. ['RULE_1’]

scs: Contains a list of all the supply centers in the game e.g. ['MOS’, ‘SEV’, ‘STP’, ‘WAR’, ‘BRE’,
‘MAR’, ‘PAR’, ‘BEL’, ‘BUL’, ‘DEN’, ‘GRE’, ‘HOL’, ‘NWY’, ...]

seq: [] Contains the sequence of seasons in format ‘SEASON_NAME SEASON_TYPE’ e.g.
['NEWYEAR’, ‘SPRING MOVEMENT’, ‘SPRING RETREATS’, ‘FALL MOVEMENT’, ‘FALL RE-
TREATS’, ‘WINTER ADJUSTMENTS’]

unclear: Contains the alias for ambiguous places e.g. { ‘EAST’: ‘EAS’}
unit_names: {} Contains a dict of the unit names e.g. {‘F’: ‘FLEET’, ‘A’: ‘ARMY’}

units: Dict that contains the current position of each unit by power e.g. { 'FRANCE’: [‘'F BRE’, ‘A MAR’,
‘A PAR’], ‘RUSSIA’: ['A WAR’, ‘A MOS’, ‘F SEV’, ‘F STP/SC’], ... }

validated: Boolean to indicate if the map file has been validated e.g. 1

victory: Indicates the number of supply centers to win the game (>50% required if None) e.g. 18

init__ (name=’standard’, use_cache=True)

Constructor function
Parameters
* name — Name of the map to load (or full path to a custom map file)

* use_cache — Boolean flag to indicate we want a blank object that doesn’t use cache

svg_path

Return path to the SVG file of this map (or None if it does not exist)

validate (force=0)

Validate that the configuration from a map file is correct

Parameters force — Indicate that we want to force a validation, even if the map is already
validated

Returns Nothing

load (file_name=None)

Loads a map file from disk

Parameters file name — Optional. A string representing the file to open. Otherwise, defaults
to the map name

60

Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

Returns Nothing

build_cache ()
Builds a cache to speed up abuts and coasts lookup

add_homes (power, homes, reinit)
Add new homes (and deletes previous homes if reinit)

Parameters
* power — Name of power (e.g. ITALY)
* homes - List of homes e.g. ['BUR', '-POR', 'xITA', ...]
* reinit — Indicates that we want to strip the list of homes before adding
Returns Nothing

drop (place)
Drop a place

Parameters place — Name of place to remove
Returns Nothing

norm_power (power)
Normalise the name of a power (removes spaces)

Parameters power — Name of power to normalise
Returns Normalised power name

norm (phrase)
Normalise a sentence (add spaces before /, replace -+, with © *, remove .:

Parameters phrase — Phrase to normalise
Returns Normalised sentences

compact (phrase)
Compacts a full sentence into a list of short words

Parameters phrase — The full sentence to compact (e.g. ‘England: Fleet Western Mediter-
ranean -> Tyrrhenian Sea. (bounce)’)

Returns The compacted phrase in an array (e.g. [ENGLAND’, ‘F’, ‘WES’, ‘TYS’, ‘I'])

alias (word)
This function is used to replace multi-words with their acronyms

Parameters word — The current list of words to try to shorten
Returns alias, ix - alias is the shorten list of word, ix is the ix of the next non-processed word

vet (word, strict=0)
Determines the type of every word in a compacted order phrase

0 - Undetermined, 1 - Power, 2 - Unit, 3 - Location, 4 - Coastal location 5 - Order, 6 - Move Operator
(-=_"),7 - Non-move separator (|?~) orresult (*!?~+)

Parameters
e word — The list of words to vet (e.g. ['A', 'POR', 'S', 'SPA/NC'])

* strict — Boolean to indicate that we want to verify that the words actually exist. Num-
bers become negative if they don’t exist

. diplomacy.engine.map 61

diplomacy, Release 1.1.2

Returns A list of tuple (e.g. [('A', 2), ('POR', 3), ('S', 5), ('SPA/NC',
4)1)

rearrange (word)
This function is used to parse commands

Parameters word — The list of words to vet (e.g. [[ENGLAND’, ‘F’, ‘WES’, ‘TYS’, ‘I'])

Returns The list of words in the correct order to be processed (e.g. ['[ENGLAND’, ‘F’, “‘WES’,
‘_" 4TYS,])

area_type (loc)
Returns “WATER’, ‘COAST’, ‘PORT’, ‘LAND’, ‘SHUT’

Parameters loc — The name of the location to query
Returns Type of the location (“WATER’, ‘COAST’, ‘PORT’, ‘LAND’, ‘SHUT’)

default_coast (word)

Returns the coast for a fleet move order that can only be to a single coast (e.g. F GRE-BUL returns F

GRE-BUL/SC)
Parameters word — A list of tokens (e.g. [‘F’, ‘GRE’, ‘-¢, ‘BUL’])
Returns The updated list of tokens (e.g. [‘F’, ‘GRE’, *-¢, ‘BUL/SC’])

find coasts (loc)
Finds all coasts for a given location

Parameters loc — The name of a location (e.g. ‘BUL)
Returns Returns the list of all coasts, including the location (e.g. ['BUL’, ‘BUL/EC’, ‘BUL/SC’]

abuts (unit_type, unit_loc, order_type, other_loc)
Determines if a order for unit_type from unit_loc to other_loc is adjacent.

Note: This method uses the precomputed cache
Parameters
* unit_type - The type of unit (‘A’ or ‘F’)
e unit_loc — The location of the unit (‘BUR’, ‘BUL/EC”)
* order_type — The type of order (‘S’ for Support, ‘C’ for Convoy’, ‘-* for move)
¢ other loc — The location of the other unit
Returns 1 if the locations are adjacent for the move, 0 otherwise

is_valid_unit (unit, no_coast_ok=0, shut_ok=0)
Determines if a unit and location combination is valid (e.g. ‘A BUR’) is valid

Parameters
* unit — The name of the unit with its location (e.g. F SPA/SC)

* no_coast_ok — Indicates if a coastal location with no coast (e.g. SPA vs SPA/SC) is
acceptable

* shut_ok — Indicates if a impassable country (e.g. Switzerland) is OK
Returns A boolean to indicate if the unit/location combination is valid

abut_1list (site, incl_no_coast=False)
Returns the adjacency list for the site

Parameters

62 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

* site — The province we want the adjacency list for

* incl_no_coast — Boolean flag that indicates to also include province without coast
if it has coasts e.g. will return [‘'BUL/SC’, ‘BUL/EC’] if False, and [‘bul’, ‘BUL/SC’,
‘BUL/EC’] if True

Returns A list of adjacent provinces
Note: abuts are returned in mixed cases
* An adjacency that is lowercase (e.g. ‘bur’) can only be used by an army
* An adjacency that starts with a capital letter (e.g. ‘Bal’) can only be used by a fleet
* An adjacency that is uppercase can be used by both an army and a fleet

find_next_phase (phase, phase_type=None, skip=0)
Returns the long name of the phase coming immediately after the phase

Parameters
* phase — The long name of the current phase (e.g. SPRING 1905 RETREATS)

* phase_type — The type of phase we are looking for (e.g. ‘M’ for Movement, ‘R’ for
Retreats, ‘A’ for Adjust.)

* skip — The number of match to skip (e.g. 1 to find not the next phase, but the one after)
Returns The long name of the next phase (e.g. FALL 1905 MOVEMENT)

find_previous_phase (phase, phase_type=None, skip=0)
Returns the long name of the phase coming immediately prior the phase

Parameters
* phase — The long name of the current phase (e.g. SPRING 1905 RETREATS)

* phase_type — The type of phase we are looking for (e.g. ‘M’ for Movement, ‘R’ for
Retreats, ‘A’ for Adjust.)

* skip — The number of match to skip (e.g. 1 to find not the next phase, but the one after)
Returns The long name of the previous phase (e.g. SPRING 1905 MOVEMENT)

compare_phases (phasel, phase2)
Compare 2 phases (Strings) and return 1, -1, or O to indicate which phase is larger

Parameters

e phasel — The first phase (e.g. S1901M, FORMING, COMPLETED)

* phase2 — The second phase (e.g. S1901M, FORMING, COMPLETED)
Returns 1 if phasel > phase2, -1 if phase2 > phasel otherwise 0 if they are equal

Constructs a 5 character representation (S1901M) from a phase (SPRING 1901 MOVEMENT)
Parameters
* phase — The full phase (e.g. SPRING 1901 MOVEMENT)
* default - The default value to return in case conversion fails

Returns A 5 character representation of the phase

Constructs a full sentence of a phase from a 5 character abbreviation

4.2,

diplomacy.engine.map

diplomacy, Release 1.1.2

Parameters
* phase_abbr - 5 character abbrev. (e.g. S1901M)
e default — The default value to return in case conversion fails

Returns A full phase description (e.g. SPRING 1901 MOVEMENT)

4.3 diplomacy.engine.message

Game message. Represent a message exchanged inside a game.
Possible messages exchanges:

* power 1 -> power 2

e power -> all game

* system -> power

e system -> all game

* system -> observers

* system -> omniscient observers
Sender system is identified with constant SYSTEM defined below.

Recipients all game, observers and omniscient observers are identified respectively with constants GLOBAL, OB-
SERVER and OMNISCIENT defined below.

Consider using Game methods to generate appropriate messages instead of this class directly:
* Game.new_power_message() to send a message from a power to another.
* Game.new_global_message() to send a message from a power to all game.

¢ ServerGame.new_system_message() to send a server system message. Use constant names defined below to
specify recipient for system message when it’s not a power name (GLOBAL, OBSERVER or OMNISCIENT).

class diplomacy.engine.message.Message (**kwargs)
Bases: diplomacy.utils. jsonable.Jsonable

Message class.
Properties:
» sender: message sender name: either SYSTEM or a power name.
* recipient: message recipient name: either GLOBAL, OBSERVER, OMNISCIENT or a power name.
* time_sent: message timestamp in microseconds.
* phase: short name of game phase when message is sent.
* message: message body.
Note about timestamp management:

We assume a message has an unique timestamp inside one game. To respect this rule, the server is the only
one responsible for generating message timestamps. This allow to generate timestamp or only 1 same machine
(server) instead of managing timestamps from many user machines, to prevent timestamp inconsistency when
messages are stored on server. Therefore, message timestamp is the time when server stores the message, not
the time when message was sent by any client.

64 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

is_global ()

Return True if this message is global.

for observer ()

Return True if this message is sent to observers.

4.4 diplomacy.engine.power

Power

» Contains the power object representing a power in the game

class diplomacy.engine.power .Power (game=None, name=None, **kwargs)
Bases: diplomacy.utils. jsonable.Jsonable

Power Class

Properties:

L]

L]

abbrev - Contains the abbrev of the power (i.e. the first letter of the power name) (e.g. ‘F’ for FRANCE)
adjust - List of pending adjustment orders (e.g. [‘A PAR B’, ‘A PAR R MAR’, ‘A MAR D’, “WAIVE’])
centers - Contains the list of supply centers currently controlled by the power ['MOS’, ‘SEV’, ‘STP’]

civil_disorder - Bool flag to indicate that the power has been put in CIVIL_DISORDER (e.g. True or
False)

controller - Sorted dictionary mapping timestamp to controller (either dummy or a user ID) who takes
control of power at this timestamp.

game - Contains a reference to the game object
goner - Boolean to indicate that this power doesn’t control any SCs any more (e.g. True or False)

homes - Contains a list of homes supply centers (where you can build) e.g. [‘PAR’, ‘MAR’, ...] or None
if empty

influence - Contains a list of locations influenced by this power Note: To influence a location, the power
must have visited it last. e.g [‘PAR’, ‘MAR’, ...]

name - Contains the name of the power (e.g. ‘FRANCE’)

orders - Contains a dictionary of units and their orders. For NO_CHECK games, unit is ‘ORDER 1’,
‘ORDER 2, ...

- e.g. {‘APAR’: “-MAR’ } or {‘ORDER 1’: ‘A PAR - MAR’, ‘ORDER 2": “...°, ... }
— Can also be {'REORDER 1’: ‘A PAR - MAR’, INVALID 1’: ‘A PAR - MAR’, ... } after validation

retreats - Contains the list of units that need to retreat with their possible retreat locations (e.g. {‘A PAR’:
[‘'MAR’, ‘BER’]})

role - Power type (observer, omniscient, player or server power). Either the power name (for a player
power) or a value in diplomacy.utils.strings. ALL._ROLE_TYPES

tokens - Only for server power: set of tokens of current power controlled (if not None).
units - Contains the list of units (e.g. [‘A PAR’, ‘A MAR’, ...]

vote - Only for omniscient, player and server power: power vote (‘yes’, ‘no’ or ‘neutral’).

__init__ (game=None, name=None, **kwargs)

Constructor

4.4. diplomacy.engine.power 65

diplomacy, Release 1.1.2

reinit (include_flags=6)
Performs a reinitialization of some of the parameters

Parameters include_flags — Bit mask to indicate which params to reset (bit 1 = orders, 2
= persistent, 4 = transient)

Returns None

static compare (power_I, power_2)
Comparator object - Compares two Power objects

Parameters
* power_1 — The first Power object to compare
* power_2 — The second Power object to compare
Returns 1 if self is greater, -1 if other is greater, O if they are equal

initialize (game)
Initializes a game and resets home, centers and units

Parameters game (diplomacy.Game)— The game to use for initialization

merge (other_power)
Transfer all units, centers, and homes of the other_power to this power

Parameters other_power — The other power (will be empty after the merge)

clear units()
Removes all units from the map

clear centers ()
Removes ownership of all supply centers

is_dummy ()
Indicates if the power is a dummy

Returns Boolean flag to indicate if the power is a dummy

is_eliminated()
Returns a flag to show if player is eliminated

Returns If the current power is eliminated

clear orders ()
Clears the power’s orders

moves_submitted ()
Returns a boolean to indicate if moves has been submitted

Returns 1 if not in Movement phase, or orders submitted, or no more units lefts

is_observer_power ()
(Network Method) Return True if this power is an observer power.

is_omniscient_power ()

(Network Method) Return True if this power is an omniscient power.
is_player_ power ()

(Network Method) Return True if this power is a player power.

is_server_power ()
(Network Method) Return True if this power is a server power.

66 Chapter 4. diplomacy.engine

diplomacy, Release 1.1.2

is_controlled()
(Network Method) Return True if this power is controlled.

does_not_wait ()
(Network Method) Return True if this power does not wait (ie. if we could already process orders of this
power).

update_controller (username, timestamp)
(Network Method) Update controller with given username and timestamp.

set_controlled (username)
(Network Method) Control power with given username. Username may be None (meaning no controller).

get_controller ()
(Network Method) Return current power controller name (‘dummy’ if power is not controlled).

get_controller_timestamp ()
(Network Method) Return timestamp when current controller took control of this power.

is_controlled_by (username)
(Network Method) Return True if this power is controlled by given username.

has_token (foken)
(Server Method) Return True if this power has given token.

add token (token)
(Server Method) Add given token to this power.

remove_tokens (fokens)
(Server Method) Remove sequence of tokens from this power.

4.5 diplomacy.engine.renderer

Renderer
* Contains the renderer object which is responsible for rendering a game state to svg

class diplomacy.engine.renderer.Renderer (game, svg_path=None)
Bases: object

Renderer object responsible for rendering a game state to svg

__init__ (game, svg_path=None)
Constructor

Parameters
* game (diplomacy.Game) — The instantiated game object to render

* svg_path(str, optional)-Optional. Can be set to the full path of a custom SVG
to use for rendering the map.

render (incl_orders=True, incl_abbrev=False, output_format="svg’, output_path=None)
Renders the current game and returns the XML representation

Parameters

* incl_orders (bool, optional)— Optional. Flag to indicate we also want to ren-
der orders.

* incl_abbrev (bool, optional)- Optional. Flag to indicate we also want to dis-
play the provinces abbreviations.

4.5. diplomacy.engine.renderer 67

diplomacy, Release 1.1.2

* output_format (str, optional)— The desired output format. Valid values are:
svg

* output_path (str | None, optional)— Optional. The full path where to save
the rendering on disk.

Returns The rendered image in the specified format.

68 Chapter 4. diplomacy.engine

CHAPTER B

diplomacy.integration

5.1 integration.webdiplomacy_net.api

Contains an API class to send requests to webdiplomacy.net

class diplomacy.integration.webdiplomacy_net.api.API (api_key, connect_timeout=30,

request_timeout=60)
Bases: diplomacy.integration.base_api.BaseAPI

API to interact with webdiplomacy.net

list_games_with_players_in_cd()
Lists the game on the standard map where a player is in CD (civil disorder) and the bots needs to submit
orders

Returns List of GameIdCountryId tuples [(game_id, country_id), (game_id, country_id)]

list_games_with _missing orders ()
Lists of the game on the standard where the user has not submitted orders yet.

Returns List of GameIdCountryId tuples [(game_id, country_id), (game_id, country_id)]

get_game_and_power (game_id, country_id, max_phases=None)
Returns the game and the power we are playing

Parameters
e game_id (int)— The id of the game object (integer)
* country_id (int) - The id of the country for which we want the game state (integer)

* max_phases (int | None, optional)- Optional. If set, improve speed by gen-
erating game only using the last ‘X’ phases.

Returns
A tuple consisting of

1. The diplomacy.Game object from the game state or None if an error occurred

69

diplomacy, Release 1.1.2

2. The power name (e.g. ‘FRANCE’) referred to by country_id

set_orders (game, power_name, orders, wait=None)
Submits orders back to the server

Parameters

* game (diplomacy.Game) — A diplomacy.engine.game.Game object repre-
senting the current state of the game

* power_name (str)— The name of the power submitting the orders (e.g. ‘FRANCE’)

e orders (List [str])— A list of strings representing the orders (e.g. [‘A PAR H’, ‘F
BRE - MAO’])

* wait (bool | None, optional)-Optional. If True, sets ready=False, if False sets
ready=True.

Returns True for success, False for failure

70 Chapter 5. diplomacy.integration

CHAPTER O

diplomacy.utils

6.1 diplomacy.utils.errors

Error - Contains the error messages and code used by the engine

class diplomacy.utils.errors.Error (code, message=None)
Bases: diplomacy.utils.common.StringableCode

Represents an error

class diplomacy.utils.errors.MapError (code, message)
Bases: diplomacy.utils.errors.Error

Represents a map error

__init_ (code, message)
Build a MapError

Parameters
* code - int code of the error
* message — human readable string message associated to the error

class diplomacy.utils.errors.GameError (code, message)
Bases: diplomacy.utils.errors.Error

Represents a game error

__init_ (code, message)
Build a GameError

Parameters
¢ code - int code of the error

* message — human readable string message associated to the error

71

diplomacy, Release 1.1.2

class diplomacy.utils.errors.StdError (code, message)
Bases: diplomacy.utils.errors.Error

Represents a standard error

__init_ (code, message)
Build a StdError

Parameters
¢ code - int code of the error

* message — human readable string message associated to the error

6.2 diplomacy.utils.exceptions

Exceptions used in diplomacy network code.

exception diplomacy.utils.exceptions.DiplomacyException (message=")
Bases: Exception

Diplomacy network code exception.

exception diplomacy.utils.exceptions.AlreadyScheduledException (message="")
Bases: diplomacy.utils.exceptions.DiplomacyException

Cannot add a data already scheduled.

exception diplomacy.utils.exceptions.CommonKeyException (key)
Bases: diplomacy.utils.exceptions.DiplomacyException

Common key error.

exception diplomacy.utils.exceptions.KeyException (key)
Bases: diplomacy.utils.exceptions.DiplomacyException

Key error.

exception diplomacy.utils.exceptions.LengthException (expected_length,

given_length)
Bases: diplomacy.utils.exceptions.DiplomacyException

Length error.

exception diplomacy.utils.exceptions.NaturalIntegerException (integer_name=")
Bases: diplomacy.utils.exceptions.DiplomacyException

Expected a positive integer (int >= 0).

exception diplomacy.utils.exceptions.NaturalIntegerNotNullException (integer_name=")
Bases: diplomacy.utils.exceptions.NaturallntegerException

Expected a strictly positive integer (int > 0).

exception diplomacy.utils.exceptions.RandomPowerException (nb_powers,

nb_available_powers)
Bases: diplomacy.utils.exceptions.DiplomacyException

No enough playable powers to select random powers.

exception diplomacy.utils.exceptions.TypeException (expected_type, given_type)
Bases: diplomacy.utils.exceptions.DiplomacyException

Type error.

72 Chapter 6. diplomacy.utils

diplomacy, Release 1.1.2

exception diplomacy.utils.exceptions.ValueException (expected_values, given_value)
Bases: diplomacy.utils.exceptions.DiplomacyException

Value error.

exception diplomacy.utils.exceptions.NotificationException (message="")
Bases: diplomacy.utils.exceptions.DiplomacyException

Unknown notification.

exception diplomacy.utils.exceptions.ResponseException (message=")
Bases: diplomacy.utils.exceptions.DiplomacyException

Unknown response.

exception diplomacy.utils.exceptions.RequestException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Unknown request.

exception diplomacy.utils.exceptions.AdminTokenException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid token for admin operations.

exception diplomacy.utils.exceptions.DaidePortException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Daide server not started for the game

exception diplomacy.utils.exceptions.GameCanceledException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Game was cancelled.

exception diplomacy.utils.exceptions.GameCreationException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Cannot create more games on that server.

exception diplomacy.utils.exceptions.GameFinishedException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

This game is finished.

exception diplomacy.utils.exceptions.GameIdException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid game ID.

exception diplomacy.utils.exceptions.GameJoinRoleException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

A token can have only one role inside a game: player, observer or omniscient.

exception diplomacy.utils.exceptions.GameRoleException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Game role does not accepts this action.

exception diplomacy.utils.exceptions.GameMasterTokenException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid token for master operations.

6.2. diplomacy.utils.exceptions

73

diplomacy, Release 1.1.2

exception diplomacy.utils.exceptions.GameNotPlayingException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Game not playing.

exception diplomacy.utils.exceptions.GameObserverException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Disallowed observation for non-master users.

exception diplomacy.utils.exceptions.GamePhaseException (expected=None,

given=None)
Bases: diplomacy.utils.exceptions.ResponseException

Data does not match current game phase.

exception diplomacy.utils.exceptions.GamePlayerException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid player.

exception diplomacy.utils.exceptions.GameRegistrationPasswordException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid game registration password.

exception diplomacy.utils.exceptions.GameSolitaireException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

A solitaire game does not accepts players.

exception diplomacy.utils.exceptions.GameTokenException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid token for this game.

exception diplomacy.utils.exceptions.MapIdException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid map ID.

exception diplomacy.utils.exceptions.MapPowerException (power_name)
Bases: diplomacy.utils.exceptions.ResponseException

Invalid map power.

exception diplomacy.utils.exceptions.FolderException (folder_path)
Bases: diplomacy.utils.exceptions.ResponseException

Given folder not available in server.

exception diplomacy.utils.exceptions.ServerRegistrationException (message=")
Bases: diplomacy.utils.exceptions.ResponseException

Registration currently not allowed on this server.

exception diplomacy.utils.exceptions.TokenException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid token.

exception diplomacy.utils.exceptions.UserException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Invalid user.

74 Chapter 6. diplomacy.utils

diplomacy, Release 1.1.2

exception diplomacy.utils.exceptions.PasswordException (message="")
Bases: diplomacy.utils.exceptions.ResponseException

Password must not be empty.

exception diplomacy.utils.exceptions.ServerDirException (server_dir)
Bases: diplomacy.utils.exceptions.ResponseException

Error with working folder.

6.3 diplomacy.utils.export

Exporter - Responsible for exporting games in a standardized format to disk

diplomacy.utils.export.to_saved game_ format (game, output_path=None, out-

put_mode="a’)
Converts a game to a standardized JSON format

Parameters
* game (diplomacy.engine.game.Game) — game to convert.

* output_path (str | None, optional) — Optional path to file. If set, the
json.dumps() of the saved_game is written to that file.

* output_mode (str, optional) — Optional. The mode to use to write to the out-
put_path (if provided). Defaults to ‘a’

Returns A game in the standard format used to saved game, that can be converted to JSON for
serialization

Return type Dict

diplomacy.utils.export.from_saved_game_format (saved_game)
Rebuilds a diplomacy.engine.game.Game object from the saved game (python Dict) saved_game is
the dictionary. It can be built by calling json.loads(json_line).

Parameters saved_game (Dict) - The saved game exported from
to_saved_game_format ()

Return type diplomacy.engine.game.Game
Returns The game object restored from the saved game

diplomacy.utils.export.load_saved_games_from_disk (input_path, on_error="raise’)
Rebuids multiple diplomacy.engine.game.Game from each line in a .jsonl file

Parameters

* input_path (str)— The path to the input file. Expected content is one saved_game json
per line.

5

* on_error — Optional. What to do if a game conversion fails. Either ‘raise’, ‘warn’,
‘ignore’

Return type List[diplomacy.Game]
Returns A listof diplomacy.engine.game.Game objects.

diplomacy.utils.export.is_valid_saved_game (saved_game)
Checks if the saved game is valid. This is an expensive operation because it replays the game.

Parameters saved_game — The saved game (from to_saved_game_format)

6.3. diplomacy.utils.export 75

diplomacy, Release 1.1.2

Returns A boolean that indicates if the game is valid

6.4 diplomacy.utils.order_results

Results
» Contains the results labels and code used by the engine

class diplomacy.utils.order_results.OrderResult (code, message)
Bases: diplomacy.utils.common.StringableCode

Represents an order result

__init__ (code, message)
Build a Order Result

Parameters
¢ code - int code of the order result

* message — human readable string message associated to the order result

diplomacy.utils.order_results.OK = 0:
Order result OK, printed as ' '

diplomacy.utils.order_results.NO_CONVOY = 10001:no convoy
Order result NO_CONVOQY, printed as 'no convoy'

diplomacy.utils.order_results.BOUNCE = 10002:bounce
Order result BOUNCE, printed as 'bounce'

diplomacy.utils.order_results.VOID = 10003:void
Order result VOID, printed as 'void'

diplomacy.utils.order_results.CUT = 10004:cut
Order result CUT, printed as 'cut '

diplomacy.utils.order_results.DISLODGED = 10005:dislodged
Order result DISLODGED, printed as 'dislodged’

diplomacy.utils.order_results.DISRUPTED = 10006:disrupted
Order result DISRUPTED, printed as 'disrupted'

diplomacy.utils.order_results.DISBAND = 10007:disband
Order result DISBAND, printed as 'disband'

diplomacy.utils.order_results.MAYBE = 10008:maybe
Order result MAYBE, printed as 'maybe

76 Chapter 6. diplomacy.utils

CHAPTER /

Indices and tables

* genindex
* modindex

e search

77

diplomacy, Release 1.1.2

78 Chapter 7. Indices and tables

Python Module Index

d

diplomacy.
diplomacy.
diplomacy.
diplomacy.

11

diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.
diplomacy.

69

diplomacy.
diplomacy.
diplomacy.
diplomacy.

client.channel, 3
client.connection,5
client.network_game, 6
communication.notifications,

communication.requests, 13
communication.responses, 22
daide.notifications, 25
daide.requests, 30
daide.responses, 37
engine.game, 47
engine.map, 58
engine.message, 64
engine.power, 65
engine.renderer, 67
integration.webdiplomacy_net.api,

utils.errors, 71
utils.exceptions, 72
utils.export, 75
utils.order_results, 76

79

diplomacy, Release 1.1.2

80 Python Module Index

Index

Sym bols __init__ () (diplomacy.daide.requests.AdminMessageRequest
__init_ () (diplomacy.client.channel. Channel method), 36

method), 3 __init__ () (diplomacy.daide.requests.DaideRequest
__init__ () (diplomacy.client.connection.Connection method), 30

method), 6 __init__ () (diplomacy.daide.requests.DrawRequest
__init__ () (diplomacy.client.network_game.NetworkGame method), 34

method), 7 __init__ () (diplomacy.daide.requests.HistoryRequest
__init__ () (diplomacy.daide.notifications.CurrentPositionNotificdftefiod)> 32

method), 27 _init_ () (diplomacy.daide.requests.[AmRequest
__init__ () (diplomacy.daide.notifications.DaideNotification method), 31

method), 25 __init__ () (diplomacy.daide.requests.NameRequest
__init__ () (diplomacy.daide.notifications.DrawNotification method), 31

method), 28 __init__ () (diplomacy.daide.requests.NotRequest
__init__ () (diplomacy.daide.notifications.HelloNotification method), 35

method), 26 __init__ () (diplomacy.daide.requests.ParenthesisErrorRequest

__init__ () (diplomacy.daide.notifications.MapNameNotification method), 35
method), 25 __init__ () (diplomacy.daide.requests.RejectRequest

__dinit__ () (diplomacy.daide.notiﬁcations.MessageFromNotiﬁcatiHﬁethOd)’ 35

method), 29 __init__ () (diplomacy.daide.requests.SendMessageRequest

__init__ () (diplomacy.daide.notifications.MissingOrdersNotificatiBfithod), 34

method), 27 __init__ () (diplomacy.daide.requests.SubmitOrdersRequest

__init__ () (diplomacy.daide.notifications. OrderResultNotiﬁcatior["elhOd)’ 33
method), 27 __init__ () (diplomacy.daide.requests.SyntaxErrorRequest

__init__ () (diplomacy.daide.notifications.PowerIlnC ivilDisorderNﬁﬁWt)og 6

method), 28 __init__ () (diplomacy.daide.requests.TimeToDeadlineRequest
__init__ () (diplomacy.daide.notifications.PowerlsEliminatedNotifltthof)> 33

method), 28 __init__ () (diplomacy.daide.responses.AcceptResponse
__init__ () (diplomacy.daide.notifications.SoloNotification method), 42

method), 29 __init__ () (diplomacy.daide.responses.CurrentPositionResponse
__init__ () (diplomacy.daide.notifications.SummaryNotification 'Method), 40

method), 29 __init__ () (diplomacy.daide.responses.DaideResponse

_dinit__ () (diplomacy.daide.notiﬁcations.SupplyCenterNot{ﬁcatidﬁethOd)’ 37
method), 26 __init__ () (diplomacy.daide.responses.HelloResponse

__init__ () (diplomacy.daide.notifications. TimeToDeadlineNotiﬁc&'%}?Od)’ 39

method), 28 __init__ () (diplomacy.daide.responses.MapDefinitionResponse
__init__ () (diplomacy.daide.notifications. TurnOffNotification ~ ™ethod), 38
method), 29 __init__ () (diplomacy.daide.responses.MapNameResponse
__init__ () (diplomacy.daide.requests.AcceptRequest method), 37
method), 35 __init__ () (diplomacy.daide.responses.MissingOrdersResponse
method), 41

81

diplomacy, Release 1.1.2

__init__ () (diplomacy.daide.responses.NotResponse method), 10
method), 43 add_on_cleared_centers () (diplo-
__init__ () (diplomacy.daide.responses.OrderResultResponse macy.client.network_game.NetworkGame
method), 41 method), 8
__init__ () (diplomacy.daide.responses.ParenthesisErroeRedpansecleared_orders () (diplo-
method), 44 macy.client.network_game.NetworkGame
__init__ () (diplomacy.daide.responses.PowerInCivilDisorderRespoetiwod), 8
method), 44 add_on_cleared_units () (diplo-
__init__ () (diplomacy.daide.responses.PowerlsEliminatedResponswicy.client.network_game.NetworkGame
method), 44 method), 8
__init__ () (diplomacy.daide.responses.RejectResponse add_on_game_deleted () (diplo-
method), 43 macy.client.network_game.NetworkGame
__init__ () (diplomacy.daide.responses.SupplyCenterResponse method), 8
method), 39 add_on_game_message_received() (diplo-
__init__ () (diplomacy.daide.responses.SyntaxErrorResponse macy.client.network_game.NetworkGame
method), 44 method), 8
__init__ () (diplomacy.daide.responses. ThanksResponseadd_on_game_phase_update () (diplo-
method), 40 macy.client.network_game.NetworkGame
__init__ () (diplomacy.daide.responses.TimeToDeadlineResponse method), 8
method), 42 add_on_game_processed () (diplo-
__init__ () (diplomacy.daide.responses.TurnOffResponse macy.client.network_game.NetworkGame
method), 45 method), 8
__init__ () (diplomacy.engine.game.Game method), add_on_game_status_update () (diplo-
50 macy.client.network_game.NetworkGame
__init__ () (diplomacy.engine.map.Map method), 60 method), 9
__init__ () (diplomacy.engine.power.Power method), add_on_omniscient_updated() (diplo-
65 macy.client.network_game.NetworkGame
__init__ () (diplomacy.engine.renderer.Renderer method), 9
method), 67 add_on_power_orders_flag() (diplo-
__dinit__ () (diplomacy.utils.errors.GameError macy.client.network_game.NetworkGame
method), 71 method), 9
__init_ () (diplomacy.utils.errors.MapError add_on_power_orders_update () (diplo-
method), 71 macy.client.network_game.NetworkGame
__init__ () (diplomacy.utils.errors.StdError method), method), 9
72 add_on_power_vote_updated () (diplo-
__init__ () (diplomacy.utils.order_results.OrderResult macy.client.network_game.NetworkGame
method), 76 method), 9
add_on_power_wait_flag/() (diplo-
A macy.client.network_game.NetworkGame
abut_list () (diplomacy.engine.map.Map method), method), 9

62
abuts () (diplomacy.engine.map.Map method), 62
AcceptRequest (class in diplomacy.daide.requests),

35
AcceptResponse (class in diplo-
macy.daide.responses), 42
AccountDeleted (class in diplo-

macy.communication.notifications), 11
add_homes () (diplomacy.engine.map.Map method),
61

add_message ()
method), 54

add_notification_callback () (diplo-
macy.client.network_game.NetworkGame

(diplomacy.engine.game.Game

add_on_powers_controllers () (diplo-
macy.client.network_game.NetworkGame
method), 9

add_on_vote_count_updated /() (diplo-
macy.client.network_game.NetworkGame
method), 9

add_on_vote_updated() (diplo-
macy.client.network_game.NetworkGame

method), 9

add_rule () (diplomacy.engine.game.Game method),
57

add_token () (diplomacy.engine.power. Power
method), 67

ADM (in module diplomacy.daide.requests), 37

82

Index

diplomacy, Release 1.1.2

AdminMessageRequest (class in diplo-
macy.daide.requests), 36

AdminTokenException, 73

alias () (diplomacy.engine.map.Map method), 61

AlreadyScheduledException, 72

APT (class in diplo-
macy.integration.webdiplomacy_net.api),
69

area_type () (diplomacy.engine.map.Map method),
62

authenticate () (diplo-
macy.client.connection.Connection — method),
6

B

BOUNCE (in module diplomacy.utils.order_results), 76

build_cache () (diplomacy.engine.map.Map
method), 61

build_caches () (diplomacy.engine.game.Game
method), 57

C

cancel () (diplomacy.client.network_game.NetworkGame

method), 8

CCD (in module diplomacy.daide.notifications), 30

CCD (in module diplomacy.daide.responses), 45

Channel (class in diplomacy.client.channel), 3

clear_cache () (diplomacy.engine.game.Game
method), 57

clear_centers() (diplo-
macy.client.network_game.NetworkGame
method), 7

clear_centers ()
method), 56

clear_centers ()
method), 66

clear_notification_callbacks () (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_cleared_centers() (diplo-
macy.client.network_game.NetworkGame
method), 9

(diplomacy.engine.game.Game

(diplomacy.engine.power. Power

clear_on_game_phase_update () (diplo-
macy.client.network_game.NetworkGame
method), 9

clear_on_game_processed () (diplo-
macy.client.network_game.NetworkGame
method), 9

clear_on_game_status_update () (diplo-
macy.client.network_game.NetworkGame
method), 9

clear_on_omniscient_updated() (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_power_orders_flag () (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_power_orders_update () (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_power_vote_updated () (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_power_wait_flag() (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_powers_controllers() (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_vote_count_updated () (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_on_vote_updated() (diplo-
macy.client.network_game.NetworkGame
method), 10

clear_orders () (diplo-
macy.client.network_game.NetworkGame

method), 7

clear_orders () (diplomacy.engine.game.Game
method), 56

clear_orders () (diplomacy.engine.power. Power
method), 66

clear_units() (diplo-
macy.client.network_game.NetworkGame

clear_on_cleared_orders () (diplo- m?’hOd)’ 7 ‘ .
macy.client.network_game.NetworkGame clear_units () 7 (diplomacy.engine.game.Game
method), 9 method), 56

clear_on_cleared_units () (diplo- clear_units() (diplomacy.engine.power. Power
macy.client.network_game.NetworkGame method), 66
method), 9 clear_vote () (diplomacy.engine.game.Game

clear_on_game_deleted () (diplo- method), 54 . .
macy.client.network_game.NetworkGame ClearCenters (class in diplo-
method), 9 macy.communication.requests), 18

clear_on_game_message_received() (diplo- ClearedCenters ' .(class . . in diplo-
macy.client.network_game.NetworkGame macy.communication.notifications), 11
method), 9 ClearedOrders (class in diplo-

Index 83

diplomacy, Release 1.1.2

macy.communication.notifications), 11

ClearedUnits (class in diplo-
macy.communication.notifications), 11
ClearOrders (class in diplo-

macy.communication.requests), 19
ClearUnits (class in diplo-

macy.communication.requests), 19
CommonKeyException, 72
compact () (diplomacy.engine.map.Map method), 61

compare () (diplomacy.engine.power.Power static
method), 66

compare_phases () (diplomacy.engine.map.Map
method), 63

connect () (in module diplomacy.client.connection), 5
Connection (class in diplomacy.client.connection), 5
count_controlled_powers () (diplo-
macy.engine.game.Game method), 51
count_voted () (diplomacy.engine.game.Game

method), 54

create_game () (diplomacy.client.channel. Channel
method), 3

CreateGame (class in diplo-

macy.communication.requests), 15
current_state () (diplomacy.engine.game.Game

method), 51
CurrentPositionNotification (class in diplo-

macy.daide.notifications), 26

CurrentPositionRequest (class in diplo-
macy.daide.requests), 32

CurrentPositionResponse (class in diplo-
macy.daide.responses), 40

CUT (in module diplomacy.utils.order_results), 76

D

DaideNotification (class in diplo-

macy.daide.notifications), 25
DaidePortException, 73
DaideRequest (class in diplomacy.daide.requests), 30
DaideResponse (class in diplomacy.daide.responses),

37
DataGame (class in diplo-
macy.communication.responses), 24
DataGameInfo (class in diplo-
macy.communication.responses), 22
DataGamePhases (class in diplo-
macy.communication.responses), 24
DataGames (class in diplo-
macy.communication.responses), 23
DataGameSchedule (class in diplo-
macy.communication.responses), 22
DataGamesToPowerNames (class in diplo-
macy.communication.responses), 24
DataMaps (class in diplo-

macy.communication.responses), 23

DataPort (class in diplo-
macy.communication.responses), 23
DataPossibleOrders (class in diplo-
macy.communication.responses), 23
DataPowerNames (class in diplo-
macy.communication.responses), 23
DataSavedGame (class in diplo-
macy.communication.responses), 24
DataTimeStamp (class in diplo-
macy.communication.responses), 24
DataToken (class in diplo-

macy.communication.responses), 23
default_coast () (diplomacy.engine.map.Map
method), 62

delete () (diplomacy.client.network_game.NetworkGame

method), 7
delete_account ()
macy.client.channel. Channel method), 4

(diplo-

DeleteAccount (class in diplo-
macy.communication.requests), 16
DeleteGame (class in diplo-
macy.communication.requests), 19
demote_administrator () (diplo-
macy.client.channel. Channel method), 4
demote_moderator () (diplo-

macy.client.channel. Channel method), 5
diplomacy.client.channel (module), 3
diplomacy.client.connection (module), 5
diplomacy.client.network_game (module), 6
diplomacy.communication.notifications

(module), 11
diplomacy.communication.requests

ule), 13
diplomacy.communication.responses (mod-

ule), 22
diplomacy.daide.notifications (module), 25
diplomacy.daide.requests (module), 30
diplomacy.daide.responses (module), 37
diplomacy.engine.game (module), 47
diplomacy. map (module), 58
diplomacy. message (module), 64
diplomacy.engine.power (module), 65
diplomacy.engine.renderer (module), 67
diplomacy.integration.webdiplomacy_net.

(module), 69
diplomacy.utils.errors (module), 71
diplomacy.utils.exceptions (module), 72
diplomacy.utils.export (module), 75
diplomacy.utils.order_results (module), 76
DiplomacyException, 72
DISBAND (in module diplomacy.utils.order_results), 76
DISLODGED (in module diplomacy.utils.order_results),

76
DISRUPTED (in module diplomacy.utils.order_results),

(mod-

engine.
engine.

84

Index

diplomacy, Release 1.1.2

76
does_not_wait ()
method), 51
does_not_wait ()
method), 67
draw () (diplomacy.client.network_game.NetworkGame
method), 8
draw () (diplomacy.engine.game.Game method), 53
DrawNotification (class in diplo-
macy.daide.notifications), 28
DrawRequest (class in diplomacy.daide.requests), 34
drop () (diplomacy.engine.map.Map method), 61
DRW (in module diplomacy.daide.notifications), 30
DRW (in module diplomacy.daide.requests), 37

E

Error (class in diplomacy.communication.responses),
22

Error (class in diplomacy.utils.errors), 71

extend_phase_history ()
macy.engine.game.Game method), 53

(diplomacy.engine.game.Game

(diplomacy.engine.power. Power

(diplo-

F

filter_messages () (diplomacy.engine.game.Game
class method), 52

find_coasts () (diplomacy.engine.map.Map
method), 62

find_next_phase () (diplomacy.engine.map.Map
method), 63

find_previous_phase () (diplo-
macy.engine.map.Map method), 63

FolderException, 74

for_observer () (diplo-
macy.engine.message.Message method),

65
FRM (in module diplomacy.daide.notifications), 30
from _bytes ()
macy.daide.requests.RequestBuilder
method), 30
from_saved_game_format ()
macy.utils.export), 75

(diplo-
static

(in module diplo-

G

Game (class in diplomacy.engine.game), 47
GameCanceledException, 73
GameCreationException, 73
GameDeleted (class in
macy.communication.notifications), 12
GameError (class in diplomacy.utils.errors), 71
GameFinishedException, 73
GameIdException, 73
GameJoinRoleException, 73
GameMasterTokenException, 73

diplo-

GameMessageReceived (class in diplo-
macy.communication.notifications), 13
GameNotPlayingException, 73
GameObserverException, 74
GamePhaseException, 74
GamePhaseUpdate (class in
macy.communication.notifications), 12
GamePlayerException, 74
GameProcessed (class in
macy.communication.notifications), 12
GameRegistrationPasswordException, 74
GameRoleException, 73
GameSolitaireException, 74

diplo-

diplo-

GameStatusUpdate (class in diplo-
macy.communication.notifications), 12
GameTokenException, 74
get_all_possible_orders () (diplo-
macy.engine.game.Game method), 58
get_available_maps () (diplo-

macy.client.channel. Channel method), 4
get_centers () (diplomacy.engine.game.Game
method), 54
get_controlled_power_names ()
macy.engine.game.Game method), 51
get_controller () (diplomacy.engine.power.Power
method), 67
get_controller_timestamp ()
macy.engine.power. Power method), 67
get_controllers () (diplomacy.engine.game.Game
method), 52

(diplo-

(diplo-

get_controllers_timestamps () (diplo-
macy.engine.game.Game method), 52

get_current_phase () (diplo-
macy.engine.game.Game method), 54

get_daide_port () (diplo-
macy.client.connection.Connection ~ method),
6

get_dummy_power_names () (diplo-

macy.engine.game.Game method), 52
get_dummy_unordered_power_names () (diplo-

macy.engine.game.Game method), 52
get_dummy_waiting_powers ()

macy.client.channel. Channel method), 4

(diplo-

get_expected_controls_count () (diplo-
macy.engine.game.Game method), 51
get_game_and_power () (diplo-

macy.integration.webdiplomacy_net.api.API
method), 69
get_games_info ()
macy.client.channel. Channel method), 4
get_hash () (diplomacy.engine.game.Game method),
57
get_latest_timestamp ()
macy.engine.game.Game method), 52

(diplo-

(diplo-

Index

85

diplomacy, Release 1.1.2

get_map_power_names () (diplo-
macy.engine.game.Game method), 54

get_order_status () (diplo-
macy.engine.game.Game method), 55

get_orderable_locations () (diplo-

macy.engine.game.Game method), 54
get_orders () (diplomacy.engine.game.Game

method), 54

get_phase_data () (diplomacy.engine.game.Game
method), 58

get_phase_from_history () (diplo-
macy.engine.game.Game method), 53

get_phase_history () (diplo-

macy.client.network_game.NetworkGame
method), 7

get_phase_history () (diplo-
macy.engine.game.Game method), 52
get_playable_powers () (diplo-

macy.client.channel. Channel method), 4
get_power () (diplomacy.engine.game.Game method),
55
get_random_power_name ()
macy.engine.game.Game method), 52
get_state () (diplomacy.engine.game.Game method),

(diplo-

58
get_units () (diplomacy.engine.game.Game method),
54
GetAllPossibleOrders (class in diplo-
macy.communication.requests), 19
GetAvailableMaps (class in diplo-
macy.communication.requests), 16
GetDaidePort (class in diplo-
macy.communication.requests), 14
GetDummyWaitingPowers (class in diplo-
macy.communication.requests), 16
GetGamesInfo (class in diplo-
macy.communication.requests), 18
GetPhaseHistory (class in diplo-
macy.communication.requests), 19
GetPlayablePowers (class in diplo-

macy.communication.requests), 16
GOF (in module diplomacy.daide.requests), 36
GoFlagRequest (class in diplomacy.daide.requests),
33

Fi

has_draw_vote ()
method), 54

has_expected_controls_count ()
macy.engine.game.Game method), 51

has_power () (diplomacy.engine.game.Game method),

(diplomacy.engine.game.Game

(diplo-

HelloNotification (class in
macy.daide.notifications), 25

HelloRequest (class in diplomacy.daide.requests), 31

HelloResponse (class in diplomacy.daide.responses),
39

HistoryRequest (class in diplomacy.daide.requests),
32

HLO (in module diplomacy.daide.notifications), 29

HLO (in module diplomacy.daide.requests), 36

HLO (in module diplomacy.daide.responses), 45

HST (in module diplomacy.daide.requests), 36

HUH (in module diplomacy.daide.requests), 37

HUH (in module diplomacy.daide.responses), 45

IAM (in module diplomacy.daide.requests), 36
IAmRequest (class in diplomacy.daide.requests), 31

diplo-

initialize () (diplomacy.engine.power. Power
method), 66

is_controlled() (diplomacy.engine.game.Game
method), 51

is_controlled () (diplomacy.engine.power.Power
method), 66

is_controlled_by ()
macy.engine.power. Power method), 67
is_dummy () (diplomacy.engine.game.Game method),

(diplo-

51

is_dummy () (diplomacy.engine.power.Power method),
66

is_eliminated () (diplomacy.engine.power.Power
method), 66

is_fixed_state_unchanged/() (diplo-
macy.engine.game.Game method), 51
is_game_done (diplomacy.engine.game.Game

tribute), 51

at-

is_global() (diplomacy.engine.message.Message
method), 64

is_observer_game () (diplo-
macy.engine.game.Game method), 51

is_observer_power () (diplo-
macy.engine.power. Power method), 66

is_omniscient_game () (diplo-
macy.engine.game.Game method), 51

is_omniscient_power () (diplo-

macy.engine.power. Power method), 66
is_player_game () (diplomacy.engine.game.Game
method), 51
is_player_power ()
macy.engine.power. Power method), 66
is_server_game () (diplomacy.engine.game.Game
method), 51

(diplo-

51 is_server_power () (diplo-
has_token () (diplomacy.engine.power.Power macy.engine.power. Power method), 66
method), 67
86 Index

diplomacy, Release 1.1.2

is_valid_password() (diplo-
macy.engine.game.Game method), 51

is_valid_saved_game () (in module diplo-
macy.utils.export), 75

is_valid_unit () (diplomacy.engine.map.Map

method), 62

J

join_game () (diplomacy.client.channel. Channel

method), 4

join_powers () (diplomacy.client.channel.Channel
method), 4

JoinGame (class in diplo-
macy.communication.requests), 16

JoinPowers (class in diplo-
macy.communication.requests), 17

K

KeyException, 72

kick_powers () (diplo-

macy.client.network_game.NetworkGame
method), 7

L

leave () (diplomacy.client.network_game.NetworkGame
method), 7

LeaveGame (class in
macy.communication.requests), 19

LengthException, 72

list_games () (diplomacy.client.channel. Channel
method), 4

list_games_with_missing_orders () (diplo-
macy.integration.webdiplomacy_net.api.API
method), 69

list_games_with_players_in_cd() (diplo-
macy.integration.webdiplomacy_net.api.API
method), 69

ListGames (class in
macy.communication.requests), 17

load () (diplomacy.engine.map.Map method), 60

load_map () (diplomacy.engine.game.Game method),
57

load_saved_games_from_disk ()
diplomacy.utils.export), 75

Logout (class in diplomacy.communication.requests),
18

logout () (diplomacy.client.channel. Channel method),
4

diplo-

diplo-

(in module

M

make_omniscient ()

macy.client.channel. Channel method), 4
Map (class in diplomacy.engine.map), 58
MAP (in module diplomacy.daide.notifications), 29

(diplo-

MAP (in module diplomacy.daide.requests), 36
MAP (in module diplomacy.daide.responses), 45
MapDefinitionRequest (class in
macy.daide.requests), 32
MapDefinitionResponse (class
macy.daide.responses), 37
MapError (class in diplomacy.utils.errors), 71
MapIdException, 74
MapNameNotification (class
macy.daide.notifications), 25
MapNameResponse (class
macy.daide.responses), 37
MapPowerException, 74
MapRequest (class in diplomacy.daide.requests), 31
MAYBE (in module diplomacy.utils.order_results), 76
MDF (in module diplomacy.daide.requests), 36
MDF (in module diplomacy.daide.responses), 45
merge () (diplomacy.engine.power.Power method), 66
Message (class in diplomacy.engine.message), 64
MessageFromNotification (class in
macy.daide.notifications), 28
MIS (in module diplomacy.daide.notifications), 30
MIS (in module diplomacy.daide.requests), 36
MIS (in module diplomacy.daide.responses), 45
MissingOrdersNotification (class in diplo-
macy.daide.notifications), 27

diplo-
in diplo-
in diplo-

in diplo-

diplo-

MissingOrdersRequest (class in diplo-
macy.daide.requests), 33

MissingOrdersResponse (class in diplo-
macy.daide.responses), 41

moves_submitted () (diplo-

macy.engine.power. Power method), 66

N

NameRequest (class in diplomacy.daide.requests), 30
NaturalIntegerException, 72
NaturalIntegerNotNullException, 72

NetworkGame (class in diplo-
macy.client.network_game), 6

new_global_message () (diplo-
macy.engine.game.Game method), 53

new_power_message () (diplo-

macy.engine.game.Game method), 53
NME (in module diplomacy.daide.requests), 36
NO_CONVOY (in module diplomacy.utils.order_results),

76

no_wait () (diplomacy.client.network_game.NetworkGame
method), 7

NoResponse (class in diplo-

macy.communication.responses), 22
norm () (diplomacy.engine.map.Map method), 61
norm_power () (diplomacy.engine.map.Map method),
61
NOT (in module diplomacy.daide.requests), 37

Index

87

diplomacy, Release 1.1.2

NOT (in module diplomacy.daide.responses), 45 parse_bytes () (diplo-
NotificationException, 73 macy.daide.requests.HelloRequest ~ method),

notify () (diplomacy.client.network_game.NetworkGame 31
method), 10 parse_bytes () (diplo-
NotRequest (class in diplomacy.daide.requests), 34 macy.daide.requests.HistoryRequest method),

NotResponse (class in diplomacy.daide.responses), 43 32
NOW (in module diplomacy.daide.notifications), 29 parse_bytes () (diplo-
NOW (in module diplomacy.daide.requests), 36 macy.daide.requests.IAmRequest method),

NOW (in module diplomacy.daide.responses), 45 31
parse_bytes () (diplo-

O

OBS (in module diplomacy.daide.requests), 36
ObserverRequest (class in
macy.daide.requests), 31
OFF (in module diplomacy.daide.notifications), 30
OFF (in module diplomacy.daide.responses), 45
Ok (class in diplomacy.communication.responses), 22
OK (in module diplomacy.utils.order_results), 76
OmniscientUpdated (class in
macy.communication.notifications), 11
ORD (in module diplomacy.daide.notifications), 30
ORD (in module diplomacy.daide.responses), 45
OrderResult (class in diplomacy.utils.order_results),
76

diplo-

diplo-

OrderResultNotification (class in diplo-
macy.daide.notifications), 277

OrderResultResponse (class in diplo-
macy.daide.responses), 41

OUT (in module diplomacy.daide.notifications), 30

OUT (in module diplomacy.daide.responses), 45

P

ParenthesisErrorRequest (class in diplo-
macy.daide.requests), 35

ParenthesisErrorResponse (class in diplo-
macy.daide.responses), 44

parse_bytes () (diplo-
macy.daide.requests.AcceptRequest method),
35

parse_bytes () (diplo-

macy.daide.requests.AdminMessageRequest
method), 36

parse_bytes () (diplo-
macy.daide.requests. CurrentPositionRequest
method), 32

parse_bytes () (diplo-
macy.daide.requests.DaideRequest ~ method),
30

parse_bytes () (diplo-
macy.daide.requests.DrawRequest ~ method),
34

parse_bytes () (diplo-

macy.daide.requests.GoFlagRequest method),
33

macy.daide.requests.MapDefinitionRequest
method), 32

parse_bytes () (diplo-
macy.daide.requests.MapRequest method),
31

parse_bytes () (diplo-

macy.daide.requests.MissingOrdersRequest
method), 33

parse_bytes () (diplo-
macy.daide.requests. NameRequest ~ method),
31

parse_bytes () (diplo-
macy.daide.requests.NotRequest method),
35

parse_bytes () (diplo-

macy.daide.requests.ObserverRequest method),
31

parse_bytes () (diplo-
macy.daide.requests. ParenthesisErrorRequest
method), 35

parse_bytes () (diplo-
macy.daide.requests.RejectRequest method),
35

parse_bytes () (diplo-

macy.daide.requests.SendMessageRequest
method), 34

parse_bytes () (diplo-
macy.daide.requests.SubmitOrdersRequest
method), 33

parse_bytes () (diplo-
macy.daide.requests.SupplyCentreOwnershipRequest
method), 32

parse_bytes () (diplo-
macy.daide.requests.SyntaxErrorRequest
method), 36

parse_bytes () (diplo-
macy.daide.requests. TimeToDeadlineRequest

method), 33
parse_dict () (in module diplo-
macy.communication.notifications), 13
parse_dict () (in module diplo-
macy.communication.requests), 22
parse_dict () (in module diplo-

macy.communication.responses), 24

88

Index

diplomacy, Release 1.1.2

PasswordException, 74
pause () (diplomacy.client.network_game.NetworkGame

method), 8
phase_abbr () (diplomacy.engine.map.Map static
method), 63
phase_history_from_timestamp () (diplo-

macy.engine.game.Game method), 53
phase_long () (diplomacy.engine.map.Map method),
63
Power (class in diplomacy.engine.power), 65
power (diplomacy.engine.game.Game attribute), 50
PowerInCivilDisorderNotification (class in
diplomacy.daide.notifications), 28
PowerInCivilDisorderResponse (class in diplo-

macy.daide.responses), 43
PowerIsEliminatedNotification (class in
diplomacy.daide.notifications), 28
PowerIsEliminatedResponse (class in diplo-
macy.daide.responses), 44
PowerOrdersFlag (class in diplo-
macy.communication.notifications), 13
PowerOrdersUpdate (class in diplo-
macy.communication.notifications), 13
PowersControllers (class in diplo-
macy.communication.notifications), 12
PowerVoteUpdated (class in diplo-

macy.communication.notifications), 12
PowerWaitFlag (class in

macy.communication.notifications), 13
PRN (in module diplomacy.daide.requests), 37
PRN (in module diplomacy.daide.responses), 45

diplo-

reinit () (diplomacy.engine.power.Power method), 65

REJ (in module diplomacy.daide.requests), 37

REJ (in module diplomacy.daide.responses), 45

RejectRequest (class in diplomacy.daide.requests),
35

RejectResponse (class in diplo-
macy.daide.responses), 42
remove_omniscient () (diplo-

macy.client.channel. Channel method), 4
remove_rule () (diplomacy.engine.game.Game
method), 57
remove_tokens ()
method), 67
render () (diplomacy.engine.game.Game method), 57
render () (diplomacy.engine.renderer.Renderer
method), 67
Renderer (class in diplomacy.engine.renderer), 67
RequestBuilder (class in diplomacy.daide.requests),
30
RequestException, 73
ResponseException, 73

(diplomacy.engine.power. Power

resume () (diplomacy.client.network_game.NetworkGame

method), 8

S

save () (diplomacy.client.network_game.NetworkGame
method), 7

SaveGame (class in
macy.communication.requests), 20

SCO (in module diplomacy.daide.notifications), 29

SCO (in module diplomacy.daide.requests), 36

diplo-

process () (diplomacy.client.network_game.NetworkGamgco (in module diplomacy.daide.responses), 45

method), 8
process () (diplomacy.engine.game.Game method), 57

ProcessGame (class in diplo-
macy.communication.requests), 19

promote_administrator () (diplo-
macy.client.channel. Channel method), 4

promote_moderator () (diplo-
macy.client.channel. Channel method), 4

Q

query_schedule () (diplo-

macy.client.network_game.NetworkGame
method), 8
QuerySchedule (class in diplo-

macy.communication.requests), 20

R

RandomPowerException, 72

rearrange () (diplomacy.engine.map.Map method),
62

rebuild_hash () (diplomacy.engine.game.Game
method), 57

send_game_message () (diplo-
macy.client.network_game.NetworkGame

method), 7
SendGameMessage (class in diplo-
macy.communication.requests), 20
SendMessageRequest (class in diplo-

macy.daide.requests), 34
ServerDirException, 75
ServerRegistrationException, 74
set_centers () (diplomacy.engine.game.Game

method), 55

set_controlled() (diplomacy.engine.game.Game
method), 53

set_controlled () (diplomacy.engine.power.Power
method), 67

set_current_phase () (diplo-
macy.engine.game.Game method), 57

set_orders () (diplo-

macy.client.network_game.NetworkGame

method), 7
set_orders ()

method), 56

(diplomacy.engine.game.Game

Index

89

diplomacy, Release 1.1.2

set_orders () (diplo-
macy.integration.webdiplomacy_net.api.API
method), 70

set_phase_data()
method), 58

set_state() (diplo-
macy.client.network_game.NetworkGame

(diplomacy.engine.game.Game

method), 8

set_state () (diplomacy.engine.game.Game method),
58

set_status () (diplomacy.engine.game.Game
method), 53

set_units () (diplomacy.engine.game.Game method),
55

set_wait () (diplomacy.engine.game.Game method),
56

SetDummyPowers (class in diplo-
macy.communication.requests), 20

SetGameState (class in diplo-
macy.communication.requests), 20

SetGameStatus (class in diplo-
macy.communication.requests), 20

SetGrade (class in diplo-
macy.communication.requests), 18

SetOrders (class in diplo-
macy.communication.requests), 21

SetWaitFlag (class in diplo-

macy.communication.requests), 21

SignIn (class in diplomacy.communication.requests),
15

SLO (in module diplomacy.daide.notifications), 30

SMR (in module diplomacy.daide.notifications), 30

SND (in module diplomacy.daide.requests), 37

SoloNotification (class in
macy.daide.notifications), 29

start () (diplomacy.client.network_game.NetworkGame
method), 8

StdError (class in diplomacy.utils.errors), 71

SUB (in module diplomacy.daide.requests), 36

diplo-

SubmitOrdersRequest (class in diplo-
macy.daide.requests), 32
SummaryNotification (class in diplo-
macy.daide.notifications), 29
SupplyCenterNotification (class in diplo-
macy.daide.notifications), 26
SupplyCenterResponse (class in diplo-

macy.daide.responses), 39
SupplyCentreOwnershipRequest (class in diplo-
macy.daide.requests), 32
svg_path (diplomacy.engine.map.Map attribute), 60

Synchronize (class in diplo-
macy.communication.requests), 21
synchronize () (diplo-

macy.client.network_game.NetworkGame

method), 7

SyntaxErrorRequest (class in diplo-
macy.daide.requests), 35

SyntaxErrorResponse (class in diplo-
macy.daide.responses), 44

T

ThanksResponse (class in diplo-

macy.daide.responses), 40
(diplomacy.communication.responses.Error
method), 22
THX (in module diplomacy.daide.responses), 45
TimeToDeadlineNotification (class in diplo-
macy.daide.notifications), 28

throw ()

TimeToDeadlineRequest (class in diplo-
macy.daide.requests), 33
TimeToDeadlineResponse (class in diplo-

macy.daide.responses), 41

TME (in module diplomacy.daide.notifications), 30

TME (in module diplomacy.daide.requests), 36

TME (in module diplomacy.daide.responses), 45

to_bytes () (diplomacy.daide.notifications.DaideNotification
method), 25

to_saved_game_format () (in module diplo-
macy.utils.export), 75
to_string() (diplo-

macy.daide.notifications. DaideNotification
method), 25
TokenException, 74

TurnOffNotification (class in diplo-
macy.daide.notifications), 29

TurnOffResponse (class in diplo-
macy.daide.responses), 44

TypeException, 72

U

UniqueData (class in diplo-
macy.communication.responses), 23

UnknownToken (class in diplo-
macy.communication.requests), 18

update_controller () (diplo-
macy.engine.power. Power method), 67

update_dummy_powers () (diplo-

macy.engine.game.Game method), 53
update_hash () (diplomacy.engine.game.Game

method), 57
update_powers_controllers ()

macy.engine.game.Game method), 53
UserException, 74

Vv

validate () (diplomacy.engine.map.Map method), 60

(diplo-

90

Index

diplomacy, Release 1.1.2

validate_params () (diplo-
macy.communication.responses.UniqueData
class method), 23

ValueException, 72

vet () (diplomacy.engine.map.Map method), 61

VOID (in module diplomacy.utils.order_results), 76

Vote (class in diplomacy.communication.requests), 21

vote () (diplomacy.client.network_game.NetworkGame

method), 7
VoteCountUpdated (class in diplo-
macy.communication.notifications), 11
VoteUpdated (class in diplo-

macy.communication.notifications), 12

W

wait () (diplomacy.client.network_game.NetworkGame
method), 7

Y

YES (in module diplomacy.daide.requests), 37
YES (in module diplomacy.daide.responses), 45

Index

91

	diplomacy.client
	diplomacy.client.channel
	diplomacy.client.connection
	diplomacy.client.network_game

	diplomacy.communication
	diplomacy.communication.notifications
	diplomacy.communication.requests
	diplomacy.communication.responses

	diplomacy.daide
	diplomacy.daide.notifications
	diplomacy.daide.requests
	diplomacy.daide.responses

	diplomacy.engine
	diplomacy.engine.game
	diplomacy.engine.map
	diplomacy.engine.message
	diplomacy.engine.power
	diplomacy.engine.renderer

	diplomacy.integration
	integration.webdiplomacy_net.api

	diplomacy.utils
	diplomacy.utils.errors
	diplomacy.utils.exceptions
	diplomacy.utils.export
	diplomacy.utils.order_results

	Indices and tables
	Python Module Index
	Index

